

Art's Commerce and Science College,Onde Tal:- Vikramgad, Dist:- Palghar Topology of Metric Spaces

My Inspiration Shri. V.G. Patil Saheb Dr. V. S. Sonawne

Santosh Shivlal Dhamone

Aim

Definition of Metric Notes and Some Stand Metric Lecture No-1: Metric Spaces

### Santosh Shivlal Dhamone

Assistant Professor in Mathematics Art's Commerce and Science College,Onde Tal:- Vikramgad, Dist:- Palghar

santosh2maths@gmail.com

July 13, 2021



## Contents

My Inspiration Shri. V.G. Patil Saheb Dr. V. S. Sonawne

Santosh Shivlal Dhamone

Aim

Definition of Metric Notes and Some Stand Metric

Lecture No-1

## 1 Aim

### 2 Definition of Metric

Notes and Some Standard Metric

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Lecture No-1



## Aim

My Inspiration Shri. V.G. Patil Saheb Dr. V. S. Sonawne

Santosh Shivlal Dhamone

#### Aim

Definition of Metric Notes and Some Standard Metric Lecture No-1 Let X be an arbitrary set which could consist of vectors in  $\mathbb{R}^n$ , functions, sequences, matrices, etc. We want to endow this set with a metric; i.e a way to measure distance between elements of X. A distance or metric is a function  $d: X \times X \to \mathbb{R}$  such that if we take two elements  $x_1, x_2 \in X$  the number  $d(x_1, x_2)$  gives us the distance between them.

However, not just any function may be considered a metric: as we will see in the formal definition, a distance needs to satisfy certain properties.



# Definition of Metric

First we discuss Definition of Metric

My Inspiration Shri. V.G. Patil Saheb Dr. V. S. Sonawne

Santosh Shivlal Dhamone

Aim

#### Definition of Metric

Notes and Some Standard Metric Lecture No-1 Metric:-

Let X be a non-empty set and R be a set of real numbers.

Let  $d : X \times X \to R$  be a function, then "d" is called "metric" onX, if "d" satisfies each of the following four conditions:

- 2  $d(x_1, x_2) = 0 \iff x_1 = x_2 \qquad \forall x_1, x_2 \in X$
- Symmetric Property: $d(x_1, x_2) = d(x_2, x_1)$  $\forall x_1, x_2 \in X$
- $\begin{array}{l} \mbox{ Irriangular Inequality:} \\ d(x_1, x_3) \leq d(x_1, x_2) + d(x_2, x_3) \qquad \forall x_1, x_2, x_3 \in X \end{array}$



# Notes and Some Standard Metric

Votes

My Inspiration Shri. V.G. Patil Saheb Dr. V. S. Sonawne

Santosh Shivlal Dhamone

Aim

Definition of Metric

Notes and Some Standard Metric Lecture No-1 Note: - The non-negative real number  $d(x_1, x_2)$  is called distance between points  $x_1 and x_2$  in the metric "d" Usual Metric on R:-

Let  $d: R \times R \to R$  be a metric on R given by  $d(x_1, x_2) = |x_1 - x_2|$ . Then "d" is called a usual metric on R and (R, d) is called usual metric space. Usual Metric on  $R^2:-$ 

Let  $d: R^2 \times R^2 \to R$  be a metric on  $R^2$  given by  $d[(x_1, y_1), (x_2, y_2)] = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$ . Then "d" is called a usual metric on  $R^2$  and  $(R^2, d)$  is called usual metric space.



# Notes and Some Standard Metric

Votes

My Inspiration Shri. V.G. Patil Saheb Dr. V. S. Sonawne

Santosh Shivlal Dhamone

Aim

Definition of Metric Notes and Some Standard Metric Lecture No-1 Usual Metric on  $R^3$ :-Let  $d: R^3 \times R^3 \rightarrow R$  be a metric on  $R^3$  given by  $d[(x_1, y_1, z_1), (x_2, y_2, z_2)] =$  $\sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2 + (z_1 - z_2)^2}.$ Then "d" is called a usual metric on  $R^3$  and  $(R^3, d)$  is called usual metric space.



My Inspiration Shri. V.G. Patil Saheb Dr. V. S. Sonawne

Santosh Shivlal Dhamone

Aim

Definition of Metric Notes and Some Standar Metric

Lecture No-1

**Example 1:** Let the function d be defined as  $d: R \times R \rightarrow [0, \infty)$  for  $x, y \in R$  such that d(x, y) = |x - y|. Then show that d is metric for the set R.

Solution: Here function  $d : R \times R \rightarrow [0, \infty)$  is defined as d(x, y) = |x - y|; for  $x, y \in R$ (1) For  $x, y \in R$ . Let  $x \neq y$  $\therefore$   $x-y \neq 0$ |x - y| > 0 $d(x, y) > 0 \quad \forall x, y \in R$ 



Santosh Shivlal Dhamone

Aim

Definition of Metric Notes and Some Standau Metric

H)

Lecture No-1

(2) For 
$$x \in R$$
. we have  

$$|x - x| = 0$$

$$\therefore \quad d(x,x) = 0$$
Let  $d(x,y) = |x - y|$ 

$$= |-(y - x)| = |y - x|$$
 $d(x,y) = d(y,x)...\forall x, y \in R$ 
Let  $x, y, z \in R$ . Now  
 $d(x,y) = |x - y|$ 
 $d(x,y) = |x - z + z - y|$ 
 $d(x,y) \le |x - z| + |z - y|$ 
 $d(x,y) \le |x - z| + |z - y|$ 
 $d(x,y) \le d(x,z) + d(z,y)$ 
By (1),(2),(3) and (4), we get  
 $d$  is metric for set  $R$ .

◆□ > ◆圖 > ◆臣 > ◆臣 >

æ



My Inspiration Shri. V.G. Patil Saheb Dr. V. S. Sonawne

Santosh Shivlal Dhamone

Aim

Definition of Metric Notes and Some Standar Metric Lecture No-1

d(x, y) = 0 if x = yd(x, y) = 1 if  $x \neq y$ . Then show that d is metric for the set R. Solution: Here function  $d: R \times R \to [0, \infty)$ ; for  $x, y \in R$  is defined as d(x, y) = 0 if x = yd(x, y) = 1 if  $x \neq y$ . (1) For  $x, y \in R$ . Let  $x \neq y$ ; then by definition of function, we have d(x,y) = 1 > 0·.  $d(x, y) > 0 \quad \forall x, y \in R$ 

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

**Example 2:** Define  $d: R \times R \to [0, \infty)$  as



Santosh Shivlal Dhamone

R

Aim

Definition of Metric Notes and Some Sta

Lecture No-1

(2) For 
$$x \in R$$
. By definition we have  
 $\therefore$   $d(x,x)=0$   
For  $x, y \in R$ . Let  $d(x, y) = 1$   
 $\implies d(y,x)=1$   
 $d(x, y) = d(y, x)...\forall x, y \in R$   
For  $x, y, z \in R$ . Let  $x = y = z$   
 $d(x, y) = 0, d(x, z) = 0, d(z, y) = 0$   
 $d(x, y) = d(x, z) + d(z, y)....(i)$   
Let  $x \neq y \neq z$ . Then  
 $d(x, y) = 1, d(x, z) = 1, d(z, y) = 1$   
 $d(x, y) < d(x, z) + d(z, y)....(ii)$ 

◆□ > ◆圖 > ◆臣 > ◆臣 >

æ



Santosh Shivlal Dhamone

Aim

Definition of Metric Notes and Some Standard Metric Lecture No-1

space.

Let x = y  $y \neq z$ . Then d(x, y) = 0, d(x, z) = 1, d(z, y) = 1d(x, y) < d(x, z) + d(z, y)....(iii)By (i),(ii) (iii) we have d(x, y) < d(x, z) + d(z, y)....(4)By (1),(2),(3) and (4), we get d is metric for set R. Remark: (i) The metric d(x, y) = 0 if x = yd(x, y) = 1 if  $x \neq y$ . on the set R is called discrete metric. It is denoted by "d". (ii) The metric space  $(R, d) = R_d$  is called discrete metric

▲□▶ ▲圖▶ ▲匡▶ ▲匡▶ ― 匡 … のへで



My Inspiration Shri. V.G. Patil Saheb Dr. V. S. Sonawne

Santosh Shivlal Dhamone

Aim

Definition of Metric Notes and Some Standard Metric Lecture No-1

**Example 3:** Define  $d: R^2 \times R^2 \to [0, \infty)$  as  $d(x, y) = |x_1 - x_2| + |y_1 - y_2|$ where  $x = (x_1, y_1)$  and  $y = (x_2, y_2)$  are in  $R^2$ . Then show that d is metric for  $R^2$ . Solution: Here function  $d: \mathbb{R}^2 \times \mathbb{R}^2 \to [0, \infty)$  as  $d(x, y) = |x_1 - x_2| + |y_1 - y_2|$ where  $x = (x_1, y_1)$  and  $y = (x_2, y_2)$  are in  $R^2$ . (1) For  $x, y \in R^2$ . Let  $x \neq y$ ; then  $(x_1, y_1) \neq (x_2, y_2)$  $\therefore$  either  $x_1 \neq x_2$  or  $y_1 \neq y_2$  or both either  $|x_1 - x_2| > 0$  or  $|y_1 - y_2| > 0$  or both  $|x_1 - x_2| + |y_1 - y_2| > 0$  $\therefore d(x,y) > 0$ 



Santosh Shivlal Dhamone

Aim

Definition of Metric Notes and Some Standard Metric Lecture No-1

(2) Let  $x = (x_1, y_1) \in R^2$ . By definition we have  $d(x,x) = |x_1 - x_1| + |y_1 - y_1|$ . d(x,x) = 0B) For  $x = (x_1, y_1), y = (x_2, y_2) \in \mathbb{R}^2$ , we have  $d(x, y) = |x_1 - x_2| + |y_1 - y_2|$  $d(x, y) = |x_2 - x_1| + |y_2 - y_1|$ d(x,y) = d(y,x)4) For  $x = (x_1, y_1), y = (x_2, y_2), z = (x_3, y_3) \in \mathbb{R}^2$ . We have:  $d(x, y) = |x_1 - x_2| + |y_1 - y_2|$  $d(x, y) = |x_1 - x_3 + x_3 - x_2| + |y_1 - y_3 + y_3 - y_2|$  $d(x, y) < |x_1 - x_3| + |x_3 - x_2| + |y_1 - y_3| + |y_3 - y_2|$  $d(x, y) < (|x_1 - x_3| + |y_1 - y_3|) + (+|x_3 - x_2| + |y_3 - y_2|)$  $d(x, y) \leq d(x, z) + d(z, y)$ By (1), (2), (3) and (4), we get d is metric for set  $R^2$ . ▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで



My Inspiration Shri. V.G. Patil Saheb Dr. V. S. Sonawne

Santosh Shivlal Dhamone

Aim

Definition of Metric Notes and Some Standard Metric Lecture No-1

**Example 4:** Define  $d: R^2 \times R^2 \to [0, \infty)$  as  $d(x, y) = Max(|x_1 - x_2|, |y_1 - y_2|)$ where  $x = (x_1, y_1)$  and  $y = (x_2, y_2)$  are in  $R^2$ . Then show that d is metric for  $R^2$ . Solution: Here function  $d: \mathbb{R}^2 \times \mathbb{R}^2 \to [0, \infty)$  as  $d(x, y) = Max(|x_1 - x_2|, |y_1 - y_2|)$ where  $x = (x_1, y_1)$  and  $y = (x_2, y_2)$  are in  $R^2$ . (1) For  $x, y \in R^2$ . Let  $x \neq y$ ; then  $(x_1, y_1) \neq (x_2, y_2)$  $\therefore$  either  $x_1 \neq x_2$  or  $v_1 \neq v_2$  or both either  $|x_1 - x_2| > 0$  or  $|y_1 - y_2| > 0$  or both  $Max(|x_1 - x_2|, |y_1 - y_2|) > 0$  $\therefore d(x,y) > 0$ 



Þ,

٠

(2) Let 
$$x = (x_1, y_1) \in R^2$$
. By definition we have  
 $d(x, x) = Max(|x_1 - x_1|, |y_1 - y_1|) = Max(0, 0)$   
 $\therefore d(x,x) = 0$   
For  $x = (x_1, y_1), y = (x_2, y_2) \in R^2$ , we have  
 $d(x, y) = Max(|x_1 - x_2|, |y_1 - y_2|)$   
 $d(x, y) = Max(|x_2 - x_1|, |y_2 - y_1|)$   
 $\therefore d(x,y) = d(y,x)$ 

ヘロト 人間 トイヨト イヨト

æ



Santosh Shivlal Dhamone

Aim

Definition of Metric Notes and Some Standa Metric

Lecture No-1

(4) For  $x = (x_1, y_1), y = (x_2, y_2), z = (x_3, y_3) \in \mathbb{R}^2$ . We have:  $d(x, y) = Max(|x_1 - x_2|, |y_1 - y_2|)$ Now.  $|x_1 - x_2| = |x_1 - x_3 + x_3 - x_2| \le |x_1 - x_3| + |x_3 - x_2|$ Similarly.  $|y_1 - y_2| = |y_1 - y_3 + y_3 - y_2| < |y_1 - y_3| + |y_3 - y_2|$  $|x_1 - x_2| \le Max(|x_1 - x_3|, |v_1 - v_3|) + Max(|x_3 - x_2|, |v_3 - v_2|)$ Similarly,  $|y_1 - y_2| \le Max(|x_1 - x_3|, |y_1 - y_3|) + Max(|x_3 - x_2|, |y_3 - y_2|)$  $Max(|x_1-x_2|, |y_1-y_2|) < Max(|x_1-x_3|, |y_1-y_3|) + Max(|x_3-x_2|, |y_3-y_2|)$ d(x, y) < d(x, z) + d(z, y)By (1),(2),(3) and (4), we get d is metric for set  $R^2$ 

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで



My Inspiration Shri. V.G. Patil Saheb Dr. V. S. Sonawne

Santosh Shivlal Dhamone

Aim

Definition of Metric Notes and Some Standard Metric Lecture No-1

Example 5: Define 
$$d: R^n imes R^n o [0,\infty)$$
 as

$$d(x,y) = \left[\sum_{k=1}^{n} (x_k - y_k)^2\right]^{1/2}$$

where  $x = (x_1, x_2, ..., x_n)$ , and  $y = (y_1, y_2, ..., y_n)$  are in  $\mathbb{R}^n$ . Then show that d is metric for  $\mathbb{R}^n$ . Solution: Here function

$$d(x,y) = \left[\sum_{k=1}^{n} (x_k - y_k)^2\right]^{1/2}$$

where  $x = (x_1, x_2, ..., x_n)$ , and  $y = (y_1, y_2, ..., y_n)$  are in  $\mathbb{R}^n$ .



Santosh Shivlal Dhamone

Aim

Definition of Metric Notes and Some Star Metric Lecture No-1 (1) For  $x, y \in \mathbb{R}^n$ . Let  $x \neq y$ ; then  $(x_1, x_2, ..., x_n) \neq (y_1, y_2, ..., y_n)$   $\implies x_k \neq y_k$  for some k  $\implies (x_k - y_k)^2 > 0$   $\implies \sum_{k=1}^n (x_k - y_k)^2 > 0$   $\implies \left[\sum_{k=1}^n (x_k - y_k)^2\right]^{1/2} > 0$  $\implies d(x,y) > 0$ 

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで



Santosh Shivlal Dhamone

Aim

Definition of Metric Notes and Some Standar Metric Lecture No-1

(2) Let  $x = (x_1, x_2, ..., x_n) \in \mathbb{R}^n$ . By definition we have  $d(x,x) = \left[\sum_{k=1}^{n} (x_k - x_k)^2\right]^{1/2}$  for some k $d(x,x) = \left[\sum_{k=1}^{n} (0-0)^{2}\right]^{1/2}$  $d(\mathbf{x},\mathbf{x}) = \mathbf{0}$ B) For  $x = (x_1, x_2, ..., x_n), y = (y_1, y_2, ..., y_n) \in \mathbb{R}^n$ , we have  $d(x,y) = \left[\sum_{k=1}^{n} (x_k - y_k)^2\right]^{1/2}$  $d(x,y) = \left[\sum_{k=1}^{n} (y_k - x_k)^2\right]^{1/2}$ d(x,y) = d(y,x)

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで



Santosh Shivlal Dhamone

Aim

Definition of Metric Notes and Some Standard Metric Lecture No-1 (4) Let  $x = (x_1, x_2, ..., x_n), y = (y_1, y_2, ..., y_n)$  and  $z = (y_1, y_2, ..., y_n)$  $(z_1, z_2, ..., z_n)$  be the points in  $\mathbb{R}^n$  $d(x,y) = \left[\sum_{k=1}^{n} (x_k - y_k)^2\right]^{1/2}$  $d(x,y) = \left| \sum_{k=1}^{n} [(x_k - z_k) + (z_k - y_k)]^2 \right|^{1/2}$  $d(x,y) = \left[\sum_{k=1}^{n} (a_k + b_k)^2\right]^{1/2}$  where  $a_{k} = (x_{k} - z_{k})b_{k} = (z_{k} - v_{k})$ Bv Minkowiski Inequality we get,  $d(x,y) \leq \left[\sum_{k=1}^{n} (a_k)^2\right]^{1/2} + \left[\sum_{k=1}^{n} (b_k)^2\right]^{1/2}$  $d(x, y) < \overline{d}(x, z) + d(\overline{z}, v)$ By (1),(2),(3) and (4), we get d is metric for set  $\mathbb{R}^2$