
My Inspiration
Shri. V.G. Patil

Saheb
Dr. V. S.
Sonawne

Santosh Shivlal
Dhamone

Aim

Definition of
Metric

Notes and Some Standard
Metric

Lecture No-1

Art’s Commerce and Science College,Onde

Tal:- Vikramgad, Dist:- Palghar
Topology of Metric Spaces

Lecture No-1: Metric Spaces

Santosh Shivlal Dhamone

Assistant Professor in Mathematics
Art’s Commerce and Science College,Onde

Tal:- Vikramgad, Dist:- Palghar

santosh2maths@gmail.com

July 13, 2021



My Inspiration
Shri. V.G. Patil

Saheb
Dr. V. S.
Sonawne

Santosh Shivlal
Dhamone

Aim

Definition of
Metric

Notes and Some Standard
Metric

Lecture No-1

Contents

1 Aim

2 Definition of Metric
Notes and Some Standard Metric
Lecture No-1



My Inspiration
Shri. V.G. Patil

Saheb
Dr. V. S.
Sonawne

Santosh Shivlal
Dhamone

Aim

Definition of
Metric

Notes and Some Standard
Metric

Lecture No-1

Aim

Let X be an arbitrary set which could consist of
vectors in Rn, functions, sequences, matrices, etc. We
want to endow this set with a metric; i.e a way to
measure distance between elements of X . A distance or
metric is a function d : X × X → R such that if we take
two elements x1, x2 ∈ X the number d(x1, x2) gives us
the distance between them.

However, not just any function may be considered
a metric: as we will see in the formal definition, a
distance needs to satisfy certain properties.
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Definition of Metric
First we discuss Definition of Metric

Metric:-

Let X be a non-empty set and R be a set of real
numbers.
Let d : X × X → R be a function, then ”d” is called
”metric” onX , if ”d” satisfies each of the following four
conditions:

1 d(x1, x2) ≥ 0 ∀x1, x2 ∈ X

2 d(x1, x2) = 0⇐⇒ x1 = x2 ∀x1, x2 ∈ X

3 Symmetric Property:
d(x1, x2) = d(x2, x1) ∀x1, x2 ∈ X

4 Triangular Inequality:
d(x1, x3) ≤ d(x1, x2) + d(x2, x3) ∀x1, x2, x3 ∈ X
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Notes and Some Standard Metric
Notes

Note:- The non-negative real number d(x1, x2) is called
distance between points x1andx2 in the metric ”d”
Usual Metric on R:-

Let d : R × R → R be a metric on R given by
d(x1, x2) = |x1 − x2|. Then ”d” is called a usual metric
on R and (R , d) is called usual metric space.
Usual Metric on R2:-

Let d : R2 × R2 → R be a metric on R2 given by
d [(x1, y1), (x2, y2)] =

√
(x1 − x2)2 + (y1 − y2)2. Then

”d” is called a usual metric on R2 and (R2, d) is called
usual metric space.
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Notes and Some Standard Metric
Notes

Usual Metric on R3:-

Let d : R3 × R3 → R be a metric on R3 given by
d [(x1, y1, z1), (x2, y2, z2)] =√

(x1 − x2)2 + (y1 − y2)2 + (z1 − z2)2.
Then ”d” is called a usual metric on R3 and (R3, d) is
called usual metric space.
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Examples

Example 1: Let the function d be defined as
d : R × R → [0,∞) for x , y ∈ R such that
d(x , y) = |x − y |. Then show that d is metric for the set
R .
Solution: Here function d : R × R → [0,∞) is defined
as d(x , y) = |x − y |; for x , y ∈ R

(1) For x , y ∈ R . Let x 6= y
∴ x-y 6= 0

|x − y | > 0
d(x , y) > 0 ∀x , y ∈ R
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(2) For x ∈ R . we have
|x − x | = 0

∴ d(x,x)= 0

(3) Let d(x , y) = |x − y |
= | − (y − x)|=|y − x |

d(x , y) = d(y , x)...∀x , y ∈ R

(4) Let x , y , z ∈ R . Now
d(x , y) = |x − y |
d(x , y) = |x − z + z − y |
d(x , y) ≤ |x − z |+ |z − y |
d(x , y) ≤ d(x , z) + d(z , y)
By (1),(2),(3) and (4), we get
d is metric for set R .
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Examples

Example 2: Define d : R × R → [0,∞) as
d(x , y) = 0 if x = y
d(x , y) = 1 if x 6= y .
Then show that d is metric for the set R .
Solution: Here function d : R × R → [0,∞) ; for
x , y ∈ R is defined as
d(x , y) = 0 if x = y
d(x , y) = 1 if x 6= y .

(1) For x , y ∈ R . Let x 6= y ; then by definition of
function, we have
∴ d(x,y)=1> 0

d(x , y) > 0 ∀x , y ∈ R
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(2) For x ∈ R .By definition we have
∴ d(x,x)= 0

(3) For x , y ∈ R . Let d(x , y) = 1
=⇒ d(y,x)=1
d(x , y) = d(y , x)...∀x , y ∈ R

(4) For x , y , z ∈ R . Let x = y = z
d(x , y) = 0, d(x , z) = 0, d(z , y) = 0
d(x , y) = d(x , z) + d(z , y)....(i)
Let x 6= y 6= z .Then
d(x , y) = 1, d(x , z) = 1, d(z , y) = 1
d(x , y) < d(x , z) + d(z , y)....(ii)
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Let x = y y 6= z .Then
d(x , y) = 0, d(x , z) = 1, d(z , y) = 1
d(x , y) < d(x , z) + d(z , y)....(iii)
By (i),(ii) (iii) we have
d(x , y) ≤ d(x , z) + d(z , y)....(4)
By (1),(2),(3) and (4), we get
d is metric for set R .
Remark:(i) The metric
d(x , y) = 0 if x = y
d(x , y) = 1 if x 6= y .
on the set R is called discrete metric. It is denoted by
”d”.
(ii)The metric space (R , d) = Rd is called discrete metric
space.
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Examples

Example 3: Define d : R2 × R2 → [0,∞) as
d(x , y) = |x1 − x2|+ |y1 − y2|
where x = (x1, y1) and y = (x2, y2) are in R2.
Then show that d is metric for R2.
Solution: Here function d : R2 × R2 → [0,∞) as
d(x , y) = |x1 − x2|+ |y1 − y2|
where x = (x1, y1) and y = (x2, y2) are in R2.

(1) For x , y ∈ R2. Let x 6= y ; then (x1, y1) 6= (x2, y2)
∴ either x1 6= x2 or y1 6= y2 or both
either |x1 − x2| > 0 or |y1 − y2| > 0 or both
|x1 − x2|+ |y1 − y2| > 0

∴d(x,y)> 0
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(2) Let x = (x1, y1) ∈ R2.By definition we have
d(x , x) = |x1 − x1|+ |y1 − y1| ∴d(x,x)= 0

(3) For x = (x1, y1), y = (x2, y2) ∈ R2, we have
d(x , y) = |x1 − x2|+ |y1 − y2|
d(x , y) = |x2 − x1|+ |y2 − y1|
∴d(x,y)=d(y,x)

(4) For x = (x1, y1), y = (x2, y2), z = (x3, y3) ∈ R2. We
have;
d(x , y) = |x1 − x2|+ |y1 − y2|
d(x , y) = |x1 − x3 + x3 − x2|+ |y1 − y3 + y3 − y2|
d(x , y) ≤ |x1 − x3|+ |x3 − x2|+ |y1 − y3|+ |y3 − y2|
d(x , y) ≤ (|x1− x3|+ |y1− y3|) + (+|x3− x2|+ |y3− y2|)
d(x , y) ≤ d(x , z) + d(z , y)
By (1),(2),(3) and (4), we get
d is metric for set R2.
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Examples

Example 4: Define d : R2 × R2 → [0,∞) as
d(x , y) = Max(|x1 − x2|, |y1 − y2|)
where x = (x1, y1) and y = (x2, y2) are in R2.
Then show that d is metric for R2.
Solution: Here function d : R2 × R2 → [0,∞) as
d(x , y) = Max(|x1 − x2|, |y1 − y2|)
where x = (x1, y1) and y = (x2, y2) are in R2.

(1) For x , y ∈ R2. Let x 6= y ; then (x1, y1) 6= (x2, y2)
∴ either x1 6= x2 or y1 6= y2 or both
either |x1 − x2| > 0 or |y1 − y2| > 0 or both
Max(|x1 − x2|, |y1 − y2|) > 0

∴d(x,y)> 0
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(2) Let x = (x1, y1) ∈ R2.By definition we have
d(x , x) = Max(|x1 − x1|, |y1 − y1|) = Max(0, 0)
∴d(x,x)= 0

(3) For x = (x1, y1), y = (x2, y2) ∈ R2, we have
d(x , y) = Max(|x1 − x2|, |y1 − y2|)
d(x , y) = Max(|x2 − x1|, |y2 − y1|)
∴d(x,y)=d(y,x)
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(4) For x = (x1, y1), y = (x2, y2), z = (x3, y3) ∈ R2. We
have;
d(x , y) = Max(|x1 − x2|, |y1 − y2|)
Now,
|x1 − x2| = |x1 − x3 + x3 − x2| ≤ |x1 − x3|+ |x3 − x2|
Similarly,
|y1 − y2| = |y1 − y3 + y3 − y2| ≤ |y1 − y3|+ |y3 − y2|
|x1 − x2| ≤ Max(|x1 − x3|, |y1 − y3|) + Max(|x3 − x2|, |y3 − y2|)
Similarly, |y1 − y2| ≤ Max(|x1 − x3|, |y1 − y3|) + Max(|x3 − x2|, |y3 − y2|)
Max(|x1−x2|, |y1−y2|) ≤ Max(|x1−x3|, |y1−y3|)+Max(|x3−x2|, |y3−y2|)
d(x , y) ≤ d(x , z) + d(z, y)
By (1),(2),(3) and (4), we get
d is metric for set R2.
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Example 5: Define d : Rn × Rn → [0,∞) as

d(x , y) =

[ n∑
k=1

(xk − yk)2

]1/2

where x = (x1, x2, .., xn), and y = (y1, y2, .., yn) are in Rn.
Then show that d is metric for Rn.
Solution: Here function

d(x , y) =

[ n∑
k=1

(xk − yk)2

]1/2

where x = (x1, x2, .., xn), and y = (y1, y2, .., yn) are in Rn.
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(1) For x , y ∈ Rn. Let x 6= y ; then
(x1, x2, .., xn) 6= (y1, y2, .., yn)
=⇒ xk 6= yk for some k
=⇒ (xk − yk)2 > 0
=⇒

∑n
k=1(xk − yk)2 > 0

=⇒
[∑n

k=1(xk − yk)2

]1/2

> 0

=⇒ d(x,y)> 0
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(2) Let x = (x1, x2, ..., xn) ∈ Rn.By definition we have

d(x , x) =

[∑n
k=1(xk − xk)2

]1/2

for some k

d(x , x) =

[∑n
k=1(0− 0)2

]1/2

∴d(x,x)= 0

(3) For x = (x1, x2, ..., xn), y = (y1, y2, ..., yn) ∈ Rn, we have

d(x , y) =

[∑n
k=1(xk − yk)2

]1/2

d(x , y) =

[∑n
k=1(yk − xk)2

]1/2

∴d(x,y)=d(y,x)
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(4) Let x = (x1, x2, ..., xn), y = (y1, y2, ..., yn)andz =
(z1, z2, ..., zn) be the points in Rn

d(x , y) =

[∑n
k=1(xk − yk)2

]1/2

d(x , y) =

[∑n
k=1[(xk − zk) + (zk − yk)]2

]1/2

d(x , y) =

[∑n
k=1(ak + bk)2

]1/2

where

ak = (xk − zk)bk = (zk − yk)
By Minkowiski Inequality we get,

d(x , y) ≤
[∑n

k=1(ak)2

]1/2

+

[∑n
k=1(bk)2

]1/2

d(x , y) ≤ d(x , z) + d(z , y)
By (1),(2),(3) and (4), we get d is metric for set R2.
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