

Art's Commerce and Science College,Onde Tal:- Vikramgad, Dist:- Palghar Topology of Metric Spaces

Santosh Shivlal

Lecture No-1: Metric Spaces

Santosh Shivlal Dhamone

Assistant Professor in Mathematics Art's Commerce and Science College,Onde Tal:- Vikramgad, Dist:- Palghar

santosh2maths@gmail.com

July 13, 2021

Contents

Santosh Shivlal

[Definition of](#page-3-0)

1 [Aim](#page-2-0)

2 [Definition of Metric](#page-3-0)

[Notes and Some Standard Metric](#page-5-0)

K ロ ▶ K 個 ▶ K 결 ▶ K 결 ▶ │ 결 │ K 9 Q Q

[Lecture No-1](#page-6-0)

Aim

Santosh Shivlal

[Aim](#page-2-0)

Metric

Let X be an arbitrary set which could consist of vectors in $Rⁿ$, functions, sequences, matrices, etc. We want to endow this set with a metric; i.e a way to measure distance between elements of X. A distance or metric is a function $d: X \times X \rightarrow R$ such that if we take two elements $x_1, x_2 \in X$ the number $d(x_1, x_2)$ gives us the distance between them.

However, not just any function may be considered a metric: as we will see in the formal definition, a distance needs to satisfy certain properties.

KORKARYKERKER POLO

Definition of Metric

First we discuss Definition of Metric

Santosh Shivlal

[Definition of](#page-3-0) **Metric**

Metric:-

Let X be a non-empty set and R be a set of real numbers.

Let $d: X \times X \rightarrow R$ be a function, then "d" is called " metric" on X , if "d" satisfies each of the following four conditions:

- 1 $d(x_1, x_2) \ge 0$ $\forall x_1, x_2 \in X$ 2 $d(x_1, x_2) = 0 \Longleftrightarrow x_1 = x_2 \qquad \forall x_1, x_2 \in X$
- **3** Symmetric Property: $d(x_1, x_2) = d(x_2, x_1)$ $\forall x_1, x_2 \in X$
- **4** Triangular Inequality: $d(x_1, x_3) \leq d(x_1, x_2) + d(x_2, x_3) \qquad \forall x_1, x_2, x_3 \in X$

Notes and Some Standard Metric

Santosh Shivlal

[Definition of](#page-3-0) **Metric**

Note:- The non-negative real number $d(x_1, x_2)$ is called distance between points x_1 and x_2 in the metric "d" Usual Metric on $R:-$

Let $d : R \times R \rightarrow R$ be a metric on R given by $d(x_1, x_2) = |x_1 - x_2|$. Then "d" is called a usual metric on R and (R, d) is called usual metric space. Usual Metric on R^2 :-

Let $d:R^2\times R^2\rightarrow R$ be a metric on R^2 given by $d[(x_1, y_1), (x_2, y_2)] = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$. Then "d" is called a usual metric on R^2 and (R^2,d) is called usual metric space.

KORKARYKERKER POLO

Notes and Some Standard Metric

Santosh Shivlal

Metric [Notes and Some Standard](#page-5-0) Metric

Usual Metric on R^3 :-Let $d:R^3\times R^3\rightarrow R$ be a metric on R^3 given by $d[(x_1,y_1,z_1),(x_2,y_2,z_2)]=$ $\sqrt{(x_1-x_2)^2+(y_1-y_2)^2+(z_1-z_2)^2}.$ Then "d" is called a usual metric on R^3 and (R^3,d) is called usual metric space.

Santosh Shivlal

Metric

[Lecture No-1](#page-6-0)

Example 1: Let the function d be defined as $d: R \times R \rightarrow [0, \infty)$ for $x, y \in R$ such that $d(x, y) = |x - y|$. Then show that d is metric for the set R.

Solution: Here function $d: R \times R \rightarrow [0, \infty)$ is defined as $d(x, y) = |x - y|$; for $x, y \in R$ (1) For $x, y \in R$. Let $x \neq y$ ∴ $x-y \neq 0$ $|x - y| > 0$ $d(x, y) > 0 \quad \forall x, y \in R$

[Definition of](#page-3-0)

[Lecture No-1](#page-6-0)

(2) For
$$
x \in R
$$
. we have
\n
$$
|x - x| = 0
$$
\n∴ d(x,x)= 0
\n3) Let $d(x, y) = |x - y|$
\n $= |-(y - x)|=|y - x|$
\n $d(x, y) = d(y, x) ... \forall x, y \in R$
\n4) Let x, y, z ∈ R. Now
\n $d(x, y) = |x - y|$
\n $d(x, y) = |x - z + z - y|$
\n $d(x, y) \le |x - z| + |z - y|$
\n $d(x, y) \le d(x, z) + d(z, y)$
\nBy (1), (2), (3) and (4), we get
\nd is metric for set R.

メロトメ 御 トメ ミトメ ミト

重

 2990

Santosh Shivlal

[Lecture No-1](#page-6-0)

Example 2: Define $d : R \times R \rightarrow [0, \infty)$ as $d(x, y) = 0$ if $x = y$ $d(x, y) = 1$ if $x \neq y$. Then show that d is metric for the set R . Solution: Here function $d: R \times R \rightarrow [0, \infty)$; for $x, y \in R$ is defined as $d(x, y) = 0$ if $x = y$ $d(x, y) = 1$ if $x \neq y$. (1) For $x, y \in R$. Let $x \neq y$; then by definition of function, we have ∴ d(x,y)=1> 0 $d(x, y) > 0 \quad \forall x, y \in R$

[Definition of](#page-3-0)

[Lecture No-1](#page-6-0)

(2) For *x* ∈ *R*.By definition we have
\n∴
$$
d(x,x) = 0
$$

\n3) For *x*, *y* ∈ *R*. Let $d(x, y) = 1$
\n⇒ $d(y,x)=1$
\n $d(x, y) = d(y, x)... \forall x, y \in R$
\n4) For *x*, *y*, *z* ∈ *R*. Let *x* = *y* = *z*
\n $d(x, y) = 0, d(x, z) = 0, d(z, y) = 0$
\n $d(x, y) = d(x, z) + d(z, y)....(i)$
\nLet $x \neq y \neq z$. Then
\n $d(x, y) = 1, d(x, z) = 1, d(z, y) = 1$
\n $d(x, y) < d(x, z) + d(z, y)....(ii)$

メロトメ 御 トメ 君 トメ 君 トー

重

 2990

[Lecture No-1](#page-6-0)

Let $x = y$ $y \neq z$. Then $d(x, y) = 0, d(x, z) = 1, d(z, y) = 1$ $d(x, y) < d(x, z) + d(z, y)$(iii) By (i) , (ii) (iii) we have $d(x, y) \leq d(x, z) + d(z, y)$(4) By (1) , (2) , (3) and (4) , we get d is metric for set R. Remark:(i) The metric $d(x, y) = 0$ if $x = y$ $d(x, y) = 1$ if $x \neq y$. on the set R is called discrete metric. It is denoted by $"d"$. (ii)The metric space $(R, d) = R_d$ is called discrete metric

space.

Santosh Shivlal

[Lecture No-1](#page-6-0)

Example 3: Define $d:R^2\times R^2\rightarrow [0,\infty)$ as $d(x, y) = |x_1 - x_2| + |y_1 - y_2|$ where $x=(x_1,y_1)$ and $y=(x_2,y_2)$ are in R^2 . Then show that d is metric for R^2 . Solution: Here function $d:R^2\times R^2\rightarrow [0,\infty)$ as $d(x, y) = |x_1 - x_2| + |y_1 - y_2|$ where $x=(x_1,y_1)$ and $y=(x_2,y_2)$ are in R^2 . (1) For $x, y \in R^2$. Let $x \neq y$; then $(x_1, y_1) \neq (x_2, y_2)$ ∴ either $x_1 \neq x_2$ or $y_1 \neq y_2$ or both either $|x_1 - x_2| > 0$ or $|y_1 - y_2| > 0$ or both $|x_1 - x_2| + |y_1 - y_2| > 0$ ∴d(x,y) > 0

Santosh Shivlal Dhamone

[Lecture No-1](#page-6-0)

(2) Let $x = (x_1, y_1) \in R^2$. By definition we have $d(x, x) = |x_1 - x_1| + |y_1 - y_1|$ ∴ $d(x, x) = 0$ (3) For $x = (x_1, y_1), y = (x_2, y_2) \in R^2$, we have $d(x, y) = |x_1 - x_2| + |y_1 - y_2|$ $d(x, y) = |x_2 - x_1| + |y_2 - y_1|$ \cdot d(x,y)=d(y,x) $(\frac{1}{2}, \frac{4}{2})$ For $x = (x_1, y_1), y = (x_2, y_2), z = (x_3, y_3) \in R^2$. We have; $d(x, y) = |x_1 - x_2| + |y_1 - y_2|$ $d(x, y) = |x_1 - x_3 + x_3 - x_2| + |y_1 - y_3 + y_3 - y_2|$ $d(x, y) \le |x_1 - x_3| + |x_3 - x_2| + |y_1 - y_3| + |y_3 - y_2|$ $d(x, y) \leq (|x_1 - x_3| + |y_1 - y_3|) + (+|x_3 - x_2| + |y_3 - y_2|)$ $d(x, y) \leq d(x, z) + d(z, y)$ By (1) , (2) , (3) and (4) , we get d is metric for set R^2 . **KORK EXTERNE PROVIDE**

Santosh Shivlal

[Lecture No-1](#page-6-0)

Example 4: Define $d:R^2\times R^2\rightarrow [0,\infty)$ as $d(x, y) = Max(|x_1 - x_2|, |y_1 - y_2|)$ where $x=(x_1,y_1)$ and $y=(x_2,y_2)$ are in R^2 . Then show that d is metric for R^2 . Solution: Here function $d:R^2\times R^2\rightarrow [0,\infty)$ as $d(x, y) = Max(|x_1 - x_2|, |y_1 - y_2|)$ where $x=(x_1,y_1)$ and $y=(x_2,y_2)$ are in R^2 . (1) For $x, y \in R^2$. Let $x \neq y$; then $(x_1, y_1) \neq (x_2, y_2)$ ∴ either $x_1 \neq x_2$ or $y_1 \neq y_2$ or both either $|x_1 - x_2| > 0$ or $|y_1 - y_2| > 0$ or both $Max(|x_1 - x_2|, |y_1 - y_2|) > 0$ ∴d(x,y) > 0

[Definition of](#page-3-0) [Lecture No-1](#page-6-0)

(2) Let $x = (x_1, y_1) \in R^2$. By definition we have $d(x, x) = Max(|x_1 - x_1|, |y_1 - y_1|) = Max(0, 0)$ $\therefore d(x,x)=0$

3) For
$$
x = (x_1, y_1), y = (x_2, y_2) \in R^2
$$
, we have
\n
$$
d(x, y) = Max(|x_1 - x_2|, |y_1 - y_2|)
$$
\n
$$
d(x, y) = Max(|x_2 - x_1|, |y_2 - y_1|)
$$
\n
$$
\therefore d(x,y)=d(y,x)
$$

[Lecture No-1](#page-6-0)

(4) For $x = (x_1, y_1), y = (x_2, y_2), z = (x_3, y_3) \in R^2$. We have; $d(x, y) = Max(|x_1 - x_2|, |y_1 - y_2|)$ Now, $|x_1 - x_2| = |x_1 - x_3 + x_3 - x_2| \le |x_1 - x_3| + |x_3 - x_2|$ Similarly, $|y_1 - y_2| = |y_1 - y_3 + y_3 - y_2| < |y_1 - y_3| + |y_3 - y_2|$ $|x_1 - x_2|$ < Max($|x_1 - x_3|$, $|y_1 - y_3|$) + Max($|x_3 - x_2|$, $|y_3 - y_2|$) Similarly, $|y_1 - y_2| \leq Max(|x_1 - x_3|, |y_1 - y_3|) + Max(|x_3 - x_2|, |y_3 - y_2|)$ $Max(|x_1-x_2|, |y_1-y_2|) \le Max(|x_1-x_3|, |y_1-y_3|) + Max(|x_3-x_2|, |y_3-y_2|)$ $d(x, y) \leq d(x, z) + d(z, y)$ By (1) , (2) , (3) and (4) , we get d is metric for set R^2 .

Santosh Shivlal

[Definition of](#page-3-0) **Metric**

[Lecture No-1](#page-6-0)

Example 5: Define $d:R^n\times R^n\rightarrow [0,\infty)$ as

$$
d(x,y) = \left[\sum_{k=1}^{n} (x_k - y_k)^2\right]^{1/2}
$$

where $x = (x_1, x_2, ..., x_n)$, and $y = (y_1, y_2, ..., y_n)$ are in R^n . Then show that d is metric for R^n . Solution: Here function

$$
d(x,y) = \left[\sum_{k=1}^{n} (x_k - y_k)^2\right]^{1/2}
$$

where $x = (x_1, x_2, ..., x_n)$, and $y = (y_1, y_2, ..., y_n)$ are in R^n .

KORK ERKER ADAM ADA

[Lecture No-1](#page-6-0)

(1) For $x, y \in R^n$. Let $x \neq y$; then $(x_1, x_2, ..., x_n) \neq (y_1, y_2, ..., y_n)$ \Longrightarrow x_k \neq y_k for some k \Longrightarrow $(x_k - y_k)^2 > 0$ $\implies \sum_{k=1}^n (x_k - y_k)^2 > 0$ $\Longrightarrow \left[\sum_{k=1}^n(x_k-y_k)^2\right]^{1/2}$ > 0 $\implies d(x,y) > 0$

[Definition of](#page-3-0)

[Lecture No-1](#page-6-0)

$$
(2) Let x = (x_1, x_2, ..., x_n) \in R^n.By definition we have
$$

\n
$$
d(x, x) = \left[\sum_{k=1}^n (x_k - x_k)^2\right]^{1/2} \text{ for some } k
$$

\n
$$
d(x, x) = \left[\sum_{k=1}^n (0 - 0)^2\right]^{1/2}
$$

\n
$$
\therefore d(x, x) = 0
$$

\n3) For x = (x_1, x_2, ..., x_n), y = (y_1, y_2, ..., y_n) \in R^n, we have
\n
$$
d(x, y) = \left[\sum_{k=1}^n (x_k - y_k)^2\right]^{1/2}
$$

\n
$$
d(x, y) = \left[\sum_{k=1}^n (y_k - x_k)^2\right]^{1/2}
$$

\n
$$
\therefore d(x, y) = d(y, x)
$$

イロトメ 倒 トメ 差 トメ 差 トー

重

 2990

Santosh Shivlal Dhamone

[Definition of](#page-3-0) [Lecture No-1](#page-6-0)

(4) Let $x = (x_1, x_2, ..., x_n), y = (y_1, y_2, ..., y_n)$ andz = $(z_1, z_2, ..., z_n)$ be the points in R^n $d(x, y) = \left[\sum_{k=1}^{n} (x_k - y_k)^2\right]^{1/2}$ $d(x,y) = \Big[\sum_{k=1}^{n} [(x_k - z_k) + (z_k - y_k)]^2$ $1^{1/2}$ $d(x, y) = \left[\sum_{k=1}^{n} (a_k + b_k)^2\right]^{1/2}$ where $a_k = (x_k - z_k) b_k = (z_k - y_k)$ By Minkowiski Inequality we get, $d(x,y) \leq \left[\sum_{k=1}^n (a_k)^2 \right]^{1/2}$ $+ \left[\sum_{k=1}^n (b_k)^2 \right]^{1/2}$ $d(x, y) < d(x, z) + d(z, y)$ By (1) , (2) , (3) an[d](#page-19-0) (4) , we g[et](#page-0-0) d [is](#page-18-0) [m](#page-19-0)et[r](#page-6-0)[ic](#page-19-0) [f](#page-2-0)[o](#page-3-0)[r s](#page-19-0)et R^2 R^2 .