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Problems

1 Show that d̄ is a metric on C [a, b], where

d̄(x , y) =

∫ b

a

|x(t)− y(t)|dt.

2 Show that the discrete metric is a metric.

3 Sequence space s: set of all sequences of complex
numbers with the metric

d(x , y) =
∞∑
i=1

1

2i

|ξi − ηi |
1 + |ξi − ηi |

. (1)
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Solution

Solution.

1 d̄(x , y) = 0 ⇐⇒—x(t)-y(t)—=0forallt ∈ [a, b]
because of the continuity. We have d̄(x , y) ≥ 0 and
d̄(x , y) = d̄(y , x) trivially. We can argue the
triangle inequality as follows::

d̄(x , y) =

∫ b

a

|x(t)−y(t)|dt ≤
∫ b

a

|x(t)−z(t)|dt+

∫ b

a

|z(t)−y(t)|dt = d̄(x , z)+d̄(z , y).
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Solution

Solution.

Left as an exercise.

We show only the triangle inequality. Let a, b ∈ R . Then
we have the inequalities

|a + b|
1 + |a + b|

≤ |a|+ |b|
1 + |a|+ |b|

≤ |a|
1 + |a|

+
|b|

1 + |b|
,

where in the first step we have used the monotonicity of
the function

f (x) =
x

1 + x
= 1− 1

1 + x
, for x > 0.

Substituting a = ξi − ζi and b = ζi − ηi , where x = (ξi),
y = (ηi), and z = (ζi) we get

|ξi − ηi |
1 + |ξi − ηi |

≤ |ξi − ζi |
1 + |ξi − ζi |

+
|ζi − ηi |

1 + |ζi − ηi |
.

If we multiply both sides by 1
2i

and sum over from
i = 1 to ∞ we get the stated result.
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Standard Metrics

(1) Euclidean metric on Rn: The usual Euclidean
norm gives a metric on Rn.

d(x , y) = ||x − y || =

[
n∑

j=1

|xj − yj |2
]1/2
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Standard Metrics

(2) lp norm on Rn: There are other norms we can put
on Rn and hence other metrics. For 1 ≤ p <∞,
define

||x ||p =

[
n∑

j=1

|xj |p
]1/p

(The case p = 2 is the usual Euclidean metric.) It is
not hard to show that we get the same collection of
open sets, i.e., the same topology, for all the value
of p. As p →∞ we get:



My Inspiration
Shri. V.G. Patil

Saheb
Dr. V. S.
Sonawne

Santosh Shivlal
Dhamone

Standard Metrics

(3) sup norm on Rn: The function

d(x , y) = max
1≤j≤n

|xj − yj |

is another metric on Rn that defines the same
topology.
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Standard Metrics

(4) lp(N): If we look at infinite sequences instead of
just vectors, things are more interesting. Let lp be
the set of sequences (xn)∞n=1 with

∑∞
n=1 |xn|p <∞.

For such a sequence we define

||(xn)∞n=1||p =

[
∞∑
n=1

|xn|p
]1/p

Consider the two sets

F = {(xn)∞n=1 ∈ lp : xn ≥ 0 ∀n}
U = {(xn)∞n=1 ∈ lp : xn > 0 ∀n}

Is F closed? Is U open?
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Standard Metrics

(5) l∞(N): The space is now the set of bounded infinite
sequences. The norm is

||(xn)∞n=1||∞ = sup
1≤n<∞

|xn|
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Notice that some of these have the same convergence
properties. Suppose {xk}∞k=1 ⊆ Rn converges to x∞ in
the p-norm, i.e., ‖xk − x∞‖p → 0 as k →∞. Note that

‖x‖∞ ≤ ‖x‖p ≤ n1/p ‖x‖∞ .
It follows that for any p and q,

n−1/q ‖x‖q ≤ ‖x‖∞ ≤ ‖x‖p ≤ n1/p ‖x‖∞ ≤ n1/p ‖x‖q
so we have that the p and q norms are equivalent. It
follows that a sequence converges in p-norm if and only
if it converges in q-norm. So “convergence” is not just a
norm property, but something more general. The same
can be said for equivalent metric spaces. So what is the
most general object for which convergence makes sense?


	

