

Art's Commerce and Science College, Onde Tal:- Vikramgad, Dist:- Palghar Topology of Metric Spaces

Viy Inspiration Inri. V.G. Pati SahebDr. V. S.

Sonawne

Dhamone

Lecture No-4: Metric Spaces

Santosh Shivlal Dhamone

Assistant Professor in Mathematics Art's Commerce and Science College,Onde Tal:- Vikramgad, Dist:- Palghar

santosh2maths@gmail.com

July 24, 2021

Contents

ly Inspiration nri. V.G. Pati Saheb Dr. V. S. Sonawne

Santosh Shivle Dhamone

- 1. Normed Linear Space
- 2. Definition of Standard matrices.

Definition of Normed Linear Space

My Inspiratio Shri. V.G. Pat Saheb Dr. V. S. Sonawne

Santosh Shivl Dhamone

Definition

Let V be a vector space over \mathbb{F} (with $\mathbb{F} = \mathbb{R}$ or $\mathbb{F} = \mathbb{C}$) and $N: V \to \mathbb{R}$ a map such that, writing N(u) = ||u||, the following results hold.

- (i) $\|\mathbf{u}\| \geq 0$ for all $\mathbf{u} \in V$.
- (ii) If ||u|| = 0, then u = 0.
- (iii) If $\lambda \in \mathbb{F}$ and $u \in V$, then $\|\lambda u\| = |\lambda| \|u\|$.
- (iv) [Triangle law.] If $u, v \in V$, then

$$||u|| + ||v|| \ge ||u + v||.$$

Then we call $\| \|$ a *norm* and say that $(V, \| \|)$ is a *normed vector space*.

Theorem

My Inspiration hri. V.G. Pati Saheb Dr. V. S. Sonawne

Dhamone

Any normed vector space can be made into a metric space in a natural way.

Theorem

If (V, || ||) is a normed vector space, then the condition

$$d(\mathbf{u}, \mathbf{v}) = \|\mathbf{u} - \mathbf{v}\|$$

defines a metric d on V.

ly Inspiration V.G. Pa Saheb Dr. V. S. Sonawne

Santosh Shiv Dhamone

Proof.

We observe that

$$d(\mathbf{u},\mathbf{v}) = \|\mathbf{u} - \mathbf{v}\| \ge 0$$

and

$$d(\mathbf{u},\mathbf{u}) = ||\mathbf{0}|| = ||\mathbf{0}\mathbf{0}|| = |\mathbf{0}||\mathbf{0}|| = 0.$$

Further, if d(u, v) = 0, then ||u - v|| = 0 so u - v = 0 and

My Inspiratio Shri. V.G. Pat Saheb Dr. V. S. Sonawne

Santosh Shiv Dhamone

Proof.

u = v. We also observe that

$$d(u,v) = \|u-v\| = \|(-1)(v-u)\| = |-1|\|v-u\| = d(v,u)$$

and

$$d(u,v) + d(v,w) = ||u - v|| + ||v - w||$$

$$\geq ||(u - v) + (v - w)||$$

$$= ||u - w|| = d(u,w).$$

 \implies d is metric on V.

vn

Theorem

My Inspiration Shri. V.G. Pati Saheb Dr. V. S. Sonawne

Santosh Shivla Dhamone Suppose that a < b and we consider the space C([a,b]) of continuous functions $f:[a,b] \to \mathbb{R}$ made into a vector space in the usual way.

(i) The equation

$$\langle f,g\rangle = \int_a^b f(t)g(t)\,dt$$

defines an inner product on C([a, b]). We write

$$||f||_2 = \left(\int_a^b f(t)^2 dt\right)^{1/2}$$

for the derived norm.

Theorem

My Inspiratio hri. V.G. Pa Saheb Dr. V. S. Sonawne

Santosh Shiv Dhamone (ii) The equation

$$||f||_1=\int_a^b|f(t)|\,dt$$

defines a norm on C([a, b]). This norm does not obey the parallelogram law.

(iii) The equation

$$||f||_{\infty}=\sup_{t\in[a,b]}|f(t)|.$$

defines a norm on C([a, b]). This norm does not obey the parallelogram law.

My Inspiration Shri. V.G. Pa Saheb Dr. V. S. Sonawne

Santosh Shiv Dhamone

Proof.

(i) We have

$$\langle f, f \rangle = \int_{a}^{b} f(t)^{2} dt \geq 0.$$

If $\langle f, f \rangle = 0$, then $\int_a^b f(t)^2 dt = 0$ and, by Lemma, $f(t)^2 = 0$ for all t so f(t) = 0 for all t and f = 0. we take a = 0, b = 1,

$$f(t) = \begin{cases} t & \text{if } 0 \le t \le 1/4\\ 1/2 - t & \text{if } 1/4 \le t \le 1/2\\ 0 & \text{if } 1/2 \le t \le 1 \end{cases}$$

2

My Inspiration Shri. V.G. Pa Saheb Dr. V.S. Sonawne

Santosh Shivl Dhamone

Proof.

We have

$$\langle f,g\rangle = \int_a^b f(t)g(t)\,dt = \int_a^b g(t)f(t)\,dt = \langle g,f\rangle$$

$$\langle f+g,h\rangle = \int_a^b (f(t)+g(t))h(t)\,dt$$

$$= \int_a^b f(t)h(t)\,dt + \int_a^b g(t)h(t)\,dt = \langle f,h\rangle + \langle g,h\rangle$$

$$\langle \lambda f,g\rangle = \int_a^b \lambda f(t)g(t)\,dt = \lambda \int_a^b f(t)g(t)\,dt = \lambda \langle f,g\rangle,$$
 so we have an inner product. If we take $a=0,\ b=1,$

 $\int t$ if 0 < t < 1/4

My Inspiration Shri. V.G. Pa Saheb Dr. V. S. Sonawne

Santosh Shir Dhamone

Proof.

(ii) Observe that

$$||f||_1 = \int_a^b |f(t)| dt \ge 0$$

and that, if $||f||_1 = 0$, then

$$\int_{a}^{b} |f(t)| dt = 0,$$

so, by Lemma, |f(t)| = 0 for all t so f(t) = 0 for all t and f = 0. If we take a = 0, b = 1,

t if
$$0 \le t \le 1/4$$

Proof.

Further

$$\|\lambda f\|$$

$$\|\lambda f\|$$

$$\|\lambda f\|_1$$

 $\|\lambda f\|_1 = \int_0^b |\lambda| |f(t)| dt = |\lambda| \int_0^b |f(t)| dt = |\lambda| \|f\|_1$

$$\int_{a} |\lambda||$$

and, since $|f(t) + g(t)| \le |f(t)| + |g(t)|$, we have

 $||f+g||_1 = \int_a^b |f(t)+g(t)| dt \le \int_a^b |f(t)|+|g(t)| dt = ||f||_1$

$$J_a$$
 J_a

so we have a norm. If we take a = 0, b = 1,

$$f(t) = egin{cases} t & ext{if } 0 \leq t \leq 1/4 \ 1/2 - t & ext{if } 1/4 \leq t \leq 1/2 \end{cases}$$

My Inspiration Shri. V.G. Pat Saheb Dr. V. S. Sonawne

Santosh Shiv Dhamone

Proof.

If we take a = 0, b = 1,

$$f(t) = \begin{cases} t & \text{if } 0 \le t \le 1/4 \\ 1/2 - t & \text{if } 1/4 \le t \le 1/2 \\ 0 & \text{if } 1/2 \le t \le 1 \end{cases}$$

and g(t) = f(1-t), then

$$||f+g||_1^2 + ||f-g||_1^2 = (1/8)^2 + (1/8)^2 = 1/32 \neq 2((1/16)^2 + (1/8)^2)$$

so the parallelogram equality fails.

My Inspirati Shri. V.G. Pa Saheb Dr. V. S. Sonawne

Santosh Shivl Dhamone

Proof.

If we take a = 0, b = 1,

$$f(t) = \begin{cases} t & \text{if } 0 \le t \le 1/4 \\ 1/2 - t & \text{if } 1/4 \le t \le 1/2 \\ 0 & \text{if } 1/2 \le t \le 1 \end{cases}$$

and g(t) = f(1-t), then

$$||f+g||_1^2 + ||f-g||_1^2 = (1/8)^2 + (1/8)^2 = 1/32 \neq 2((1/16)^2 + (1/8)^2)$$

so the parallelogram equality fails. (iii) Observe that |f(t)| > 0 so

My Inspiration Inri. V.G. Pa Saheb Dr. V. S. Sonawne

Santosh Shivla Dhamone

Proof.

If we take a = 0, b = 1,

$$f(t) = egin{cases} t & ext{if } 0 \leq t \leq 1/4 \ 1/2 - t & ext{if } 1/4 \leq t \leq 1/2 \ 0 & ext{if } 1/2 \leq t \leq 1 \end{cases}$$

and g(t) = f(1-t), then

$$||f+g||_1^2 + ||f-g||_1^2 = (1/8)^2 + (1/8)^2 = 1/32 \neq 2((1/16)^2 + (1/8)^2)$$

so the parallelogram equality fails. If we take a=0, b=1.