

Art's Commerce and Science College,Onde Tal:- Vikramgad, Dist:- Palghar Topology of Metric Spaces

My Inspiration Shri. V.G. Patil Saheb Dr. V. S. Sonawne

Santosh Shivlal Dhamone

Metric Spaces Open Sets, Closed Sets

Lecture No-5: Metric Spaces

Santosh Shivlal Dhamone

Assistant Professor in Mathematics Art's Commerce and Science College,Onde Tal:- Vikramgad, Dist:- Palghar

santosh2maths@gmail.com

July 30, 2021

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Santosh Shivlal Dhamone

Metric Spaces Open Sets, Closed Sets

Metric SpacesOpen Sets, Closed Sets

ヘロト 人間 トイヨト イヨト

æ

Santosh Shivla Dhamone

Metric Spaces Open Sets, Closed Sets

[Open Ball, Closed Ball, Sphere]

$$B(x_0, r) = \{x \in X | d(x, x_0) < r\}$$

$$\bar{B}(x_0, r) = \{x \in X | d(x, x_0) \le r\}$$

$$S(x_0, r) = \{x \in X | d(x, x_0) = r\}$$

[Open, Closed, Interior]

- **1** M is open if contains a ball about each of its points.
- 2 $K \subset X$ is closed if $K^c = X K$ is open.
- **3** $B(x_0;)$ denotes the neighborhood of x_0 .
- 4 Int(M) denotes the interior of M.

[Induced Topology] Consider the set X with the collection τ of all open subsets of X. Then we have

$$\emptyset \in \tau, X \in \tau.$$

2 The union of any members of π is a member of π .

Santosh Shivlal Dhamone

Metric Spaces Open Sets, Closed Sets 3 The finite intersection of members of τ is a member of τ .

We call the pair (X, τ) a topological space and τ a topology for X. It follows that a metric space is a topological space.

[Continuous] Let X = (X, d) and $Y = (Y, \overline{d})$ be metric spaces. The mapping $T : X \to Y$ is continuous at $x_0 \in X$ if for every > 0 there is > 0 such that

 $ar{d}(\mathit{Tx},\mathit{Tx}_0)<$, x such that $d(x,x_0)<$.

Theorem (Continuous Mapping)

 $T : X \to Y$ is continuous if and only if the inverse image of any open subset of Y is an open subset of X.

Santosh Shivlal Dhamone

Metric Spaces Open Sets, Closed Sets

Proof.

Santosh Shivlal Dhamone

Metric Spaces Open Sets, Closed Sets Suppose that T is continuous. Let $S \subset Y$ be open S_0 the inverse image of S. Let $S_0 \neq \emptyset$ and take $x_0 \in S_0$. We have $Tx_0 = y_0 \in S$. Since S is open there exists an -neighborhood of y_0 , say $N \subset S$ such that $y_0 \in N$. The continuity of T implies that x_0 has a -neighborhood N_0 which is mapped into N. Since $N \subset S$ we get that $N_0 \subset S_0$, and it follows that S_0 is open.

2 Assume that the inverse image of every open set in Y is an open set in X. Then $x_0 \in X$, and N (-neighborhood of Tx_0) the inverse image N_0 of N is open. Therefore N_0 contains a -neighborhood of x_0 . Thus T is continuous.

Santosh Shivlal Dhamone

Metric Spaces Open Sets, Closed Sets Some more definitions: [Accumulation Point] $x \in M$ is said to be an accumulation point of M if $(x_n) \subset Mx_n \to x$. [Closure] M is the closure of M. [Dense Set] $M \subset X$ is in X dense if M = X. [Separable Space] X is separable if there is a countable subset which is dense in X.

- 1 If M is dense, then every ball in X contains a point of M.
- **2** *R*, *C* are separable.
- 3 A discrete metric space is separable if and only if it is countable.