

Art's Commerce and Science College, Onde Tal:- Vikramgad, Dist:- Palghar Topology of Metric Spaces

My Inspiration Shri. V.G. Patil Saheb

Santosh Shivla Dhamone

Aiiii

Definition of Metric

Notes and Some Standard Metric Practical No-1

Practical No 1: Metric Spaces

Santosh Shivlal Dhamone

Assistant Professor in Mathematics Art's Commerce and Science College,Onde Tal:- Vikramgad, Dist:- Palghar

santosh2maths@gmail.com

August 12, 2021

Contents

My Inspiration Shri. V.G. Patil Saheb

Santosh Shivla Dhamone

Aim

Definition of Metric

Notes and Some Standar Metric Practical No-1 1 Aim

- 2 Definition of Metric
 - Notes and Some Standard Metric
 - Practical No-1

Aim

My Inspiration Shri. V.G. Patil Saheb

Santosh Shivla Dhamone

Aim

Definition of

Notes and Some Star Metric Practical No-1 Let X be an arbitrary set which could consist of vectors in \mathbb{R}^n , functions, sequences, matrices, etc. We want to endow this set with a metric; i.e a way to measure distance between elements of X. A distance or metric is a function $d: X \times X \to \mathbb{R}$ such that if we take two elements $x_1, x_2 \in X$ the number $d(x_1, x_2)$ gives us the distance between them.

However, not just any function may be considered a metric: as we will see in the formal definition, a distance needs to satisfy certain properties.

Definition of Metric

First we discuss Definition of Metric

My Inspiration Shri. V.G. Pati Saheb

Santosh Shiv Dhamone

Ain

Definition of Metric

Notes and Some Stand: Metric Practical No-1 Metric:-

Let X be a non-empty set and R be a set of real numbers.

Let $d: X \times X \to R$ be a function, then "d" is called "metric" on X, if "d" satisfies each of the following four conditions:

$$d(x_1, x_2) \geq 0$$

$$\forall x_1, x_2 \in X$$

$$d(x_1, x_2) = 0 \iff x_1 = x_2$$

$$\forall x_1, x_2 \in X$$

3 Symmetric Property:

$$d(x_1,x_2)=d(x_2,x_1) \qquad \forall x_1,x_2 \in X$$

4 Triangular Inequality:

$$d(x_1, x_3) \leq d(x_1, x_2) + d(x_2, x_3)$$

$$\forall x_1, x_2, x_3 \in X$$

Notes and Some Standard Metric

Notes

My Inspiration Shri. V.G. Patil Saheb

Santosh Shivla Dhamone

, viiii

Definition of Metric

Notes and Some Standard Metric Practical No-1 Note: The non-negative real number $d(x_1, x_2)$ is called distance between points x_1 and x_2 in the metric "d" Usual Metric on R:

Let $d: R \times R \to R$ be a metric on R given by $d(x_1, x_2) = |x_1 - x_2|$. Then "d" is called a usual metric on R and (R, d) is called usual metric space.

Usual Metric on R^2 :-

Let $d: R^2 \times R^2 \to R$ be a metric on R^2 given by $d[(x_1, y_1), (x_2, y_2)] = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$. Then "d" is called a usual metric on R^2 and (R^2, d) is called usual metric space.

Notes and Some Standard Metric

Notes and Some Standard

Usual Metric on R^3 :-

Let $d: \mathbb{R}^3 \times \mathbb{R}^3 \to \mathbb{R}$ be a metric on \mathbb{R}^3 given by

$$d[(x_1, y_1, z_1), (x_2, y_2, z_2)] = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2 + (z_1 - z_2)^2}.$$

Then "d" is called a usual metric on R^3 and (R^3, d) is called usual metric space.

My Inspiration Shri. V.G. Patil Saheb

Santosh Shivla Dhamone

Aim

Definition of Metric

Notes and Some Standar Metric Practical No-1 Example 1: Let the function d be defined as $d: R \times R \to [0, \infty)$ for $x, y \in R$ such that d(x, y) = |x - y|. Then show that d is metric for the set R.

Solution: Here function $d: R \times R \to [0, \infty)$ is defined as d(x, y) = |x - y|; for $x, y \in R$

(1) For
$$x, y \in R$$
. Let $x \neq y$
 \therefore $x-y \neq 0$
 $|x-y| > 0$
 $d(x, y) > 0 \quad \forall x, y \in R$

Santosh Shivl Dhamone

Aim

Definition of Metric

Notes and Some Standard Metric Practical No-1 (2) For $x \in R$. we have |x - x| = 0 $\therefore \qquad d(x,x) = 0$

- B) Let d(x, y) = |x y|= |-(y - x)| = |y - x| $d(x, y) = d(y, x)... \forall x, y \in R$
- 1) Let $x, y, z \in R$. Now d(x, y) = |x y| d(x, y) = |x z + z y| $d(x, y) \le |x z| + |z y|$ $d(x, y) \le d(x, z) + d(z, y)$ By (1),(2),(3) and (4), we get d is metric for set R.

My Inspiration Shri. V.G. Pat Saheb

Santosh Shivla Dhamone

Ain

Definition of Metric

Notes and Some Standa Metric Practical No-1 Example 2: Define $d: R \times R \rightarrow [0, \infty)$ as

$$d(x,y)=0 \text{ if } x=y$$

$$d(x,y)=1 \text{ if } x\neq y.$$

Then show that d is metric for the set R.

Solution: Here function $d: R \times R \to [0, \infty)$; for

 $x, y \in R$ is defined as

$$d(x,y)=0 \text{ if } x=y$$

$$d(x,y)=1 \text{ if } x\neq y.$$

(1) For $x, y \in R$. Let $x \neq y$; then by definition of function, we have

$$\therefore \qquad d(x,y)=1>0 \\ d(x,y)>0 \quad \forall x,y\in R$$

Santosh Shivl Dhamone

Aim

Definition of Metric

Notes and Some Standard Metric

Practical No-1

(2) For $x \in R$.By definition we have $\therefore d(x,x) = 0$

- 3) For $x, y \in R$. Let d(x, y) = 1 $\implies d(y,x)=1$ $d(x, y) = d(y, x)... \forall x, y \in R$
- 1) For $x, y, z \in R$. Let x = y = z d(x, y) = 0, d(x, z) = 0, d(z, y) = 0 d(x, y) = d(x, z) + d(z, y)....(i)Let $x \neq y \neq z$. Then d(x, y) = 1, d(x, z) = 1, d(z, y) = 1d(x, y) < d(x, z) + d(z, y)....(ii)

Santosh Shivla Dhamone

Aım

Definition of Metric

Notes and Some Stan Metric

Practical No-1

Let x = y $y \neq z$. Then d(x, y) = 0, d(x, z) = 1, d(z, y) = 1 d(x, y) < d(x, z) + d(z, y)....(iii) By (i), (ii) (iii) we have $d(x, y) \leq d(x, z) + d(z, y)$(4)

By (1),(2),(3) and (4), we get d is metric for set R.

Remark:(i) The metric

$$d(x,y)=0 \text{ if } x=y$$

$$d(x,y)=1 \text{ if } x\neq y.$$

on the set R is called discrete metric. It is denoted by "d".

(ii) The metric space $(R, d) = R_d$ is called discrete metric space.

My Inspiration Shri. V.G. Pati Saheb

Santosh Shivla Dhamone

Aim

Definition of Metric

Notes and Some Stand Metric Practical No-1 Example 3: Define $d: R^2 \times R^2 \to [0, \infty)$ as $d(x, y) = |x_1 - x_2| + |y_1 - y_2|$ where $x = (x_1, y_1)$ and $y = (x_2, y_2)$ are in R^2 . Then show that d is metric for R^2 . Solution: Here function $d: R^2 \times R^2 \to [0, \infty)$ as $d(x, y) = |x_1 - x_2| + |y_1 - y_2|$ where $x = (x_1, y_1)$ and $y = (x_2, y_2)$ are in R^2 .

(1) For $x, y \in R^2$. Let $x \neq y$; then $(x_1, y_1) \neq (x_2, y_2)$ \therefore either $x_1 \neq x_2$ or $y_1 \neq y_2$ or both either $|x_1 - x_2| > 0$ or $|y_1 - y_2| > 0$ or both $|x_1 - x_2| + |y_1 - y_2| > 0$ $\therefore d(x,y) > 0$

Santosh Shiv Dhamone

Ain

Definition of Metric

Metric

Practical No-1

(2) Let
$$x = (x_1, y_1) \in R^2$$
. By definition we have $d(x, x) = |x_1 - x_1| + |y_1 - y_1|$: $d(x, x) = 0$

B) For $x = (x_1, y_1), y = (x_2, y_2) \in R^2$, we have $d(x, y) = |x_1 - x_2| + |y_1 - y_2|$ $d(x, y) = |x_2 - x_1| + |y_2 - y_1|$ d(x, y) = d(y, x)

1) For $x = (x_1, y_1), y = (x_2, y_2), z = (x_3, y_3) \in R^2$. We have; $d(x, y) = |x_1 - x_2| + |y_1 - y_2|$ $d(x, y) = |x_1 - x_3 + x_3 - x_2| + |y_1 - y_3 + y_3 - y_2|$ $d(x, y) \le |x_1 - x_3| + |x_3 - x_2| + |y_1 - y_3| + |y_3 - y_2|$ $d(x, y) \le (|x_1 - x_3| + |y_1 - y_3|) + (+|x_3 - x_2| + |y_3 - y_2|)$

By (1),(2),(3) and (4), we get d is metric for set R^2 .

 $d(x, y) \leq d(x, z) + d(z, y)$

My Inspiration Shri. V.G. Pati Saheb

Santosh Shivla Dhamone

Aim

Definition of Metric

Notes and Some Stand Metric Practical No-1 Example 4: Define $d: R^2 \times R^2 \to [0, \infty)$ as $d(x, y) = Max(|x_1 - x_2|, |y_1 - y_2|)$ where $x = (x_1, y_1)$ and $y = (x_2, y_2)$ are in R^2 . Then show that d is metric for R^2 . Solution: Here function $d: R^2 \times R^2 \to [0, \infty)$ as $d(x, y) = Max(|x_1 - x_2|, |y_1 - y_2|)$ where $x = (x_1, y_1)$ and $y = (x_2, y_2)$ are in R^2 .

(1) For $x, y \in R^2$. Let $x \neq y$; then $(x_1, y_1) \neq (x_2, y_2)$ ∴ either $x_1 \neq x_2$ or $y_1 \neq y_2$ or both either $|x_1 - x_2| > 0$ or $|y_1 - y_2| > 0$ or both $Max(|x_1 - x_2|, |y_1 - y_2|) > 0$ ∴ d(x,y) > 0 Santosh Shivla Dhamone

Aim

Definition of

Notes and Some Standard Metric

Practical No-1

(2) Let
$$x = (x_1, y_1) \in R^2$$
. By definition we have $d(x, x) = Max(|x_1 - x_1|, |y_1 - y_1|) = Max(0, 0)$
 $\therefore d(x, x) = 0$

For
$$x = (x_1, y_1), y = (x_2, y_2) \in R^2$$
, we have $d(x, y) = Max(|x_1 - x_2|, |y_1 - y_2|)$
 $d(x, y) = Max(|x_2 - x_1|, |y_2 - y_1|)$
 $\therefore d(x, y) = d(y, x)$

Santosh Shivla Dhamone

Aim

Definition of

Notes and Some Standar Metric

Practical No-1

(4) For $x = (x_1, y_1), y = (x_2, y_2), z = (x_3, y_3) \in \mathbb{R}^2$. We have: $d(x, y) = Max(|x_1 - x_2|, |y_1 - y_2|)$ Now. $|x_1-x_2|=|x_1-x_3+x_3-x_2|<|x_1-x_3|+|x_3-x_2|$ Similarly. $|y_1 - y_2| = |y_1 - y_3 + y_3 - y_2| < |y_1 - y_3| + |y_3 - y_2|$ $|x_1 - x_2| < Max(|x_1 - x_2|, |y_1 - y_2|) + Max(|x_3 - x_2|, |y_3 - y_2|)$ Similarly, $|y_1 - y_2| \le Max(|x_1 - x_3|, |y_1 - y_3|) + Max(|x_3 - x_2|, |y_3 - y_2|)$ $Max(|x_1-x_2|,|y_1-y_2|) < Max(|x_1-x_3|,|y_1-y_3|) + Max(|x_3-x_2|,|y_3-y_2|)$ $d(x, y) \leq d(x, z) + d(z, y)$ By (1),(2),(3) and (4), we get d is metric for set R^2

Practical No-1

Example 5: Define $d: R^n \times R^n \to [0, \infty)$ as

$$d(x,y) = \left[\sum_{k=1}^{n} (x_k - y_k)^2\right]^{1/2}$$

where $x = (x_1, x_2, ..., x_n)$, and $y = (y_1, y_2, ..., y_n)$ are in \mathbb{R}^n . Then show that d is metric for R^n .

Solution: Here function

$$d(x,y) = \left[\sum_{k=1}^{n} (x_k - y_k)^2\right]^{1/2}$$

where $x = (x_1, x_2, ..., x_n)$, and $y = (y_1, y_2, ..., y_n)$ are in \mathbb{R}^n .

Santosh Shivla Dhamone

Aim

Definition of Metric

Notes and Some Standard Metric

Practical No-1

(1) For
$$x, y \in R^n$$
. Let $x \neq y$; then $(x_1, x_2, ..., x_n) \neq (y_1, y_2, ..., y_n)$

$$\Rightarrow x_k \neq y_k \text{ for some } k$$

$$\Rightarrow (x_k - y_k)^2 > 0$$

$$\Rightarrow \sum_{k=1}^n (x_k - y_k)^2 > 0$$

$$\Rightarrow \left[\sum_{k=1}^n (x_k - y_k)^2\right]^{1/2} > 0$$

$$\Rightarrow d(x,y) > 0$$

Santosh Shivla Dhamone

Aim

Definition of Metric

Notes and Some Standar Metric

Practical No-1

(2) Let
$$x = (x_1, x_2, ..., x_n) \in R^n$$
. By definition we have
$$d(x, x) = \left[\sum_{k=1}^n (x_k - x_k)^2\right]^{1/2} \text{ for some } k$$
$$d(x, x) = \left[\sum_{k=1}^n (0 - 0)^2\right]^{1/2}$$
$$\therefore d(x, x) = 0$$

B) For $x = (x_1, x_2, ..., x_n), y = (y_1, y_2, ..., y_n) \in R^n$, we have $d(x, y) = \left[\sum_{k=1}^n (x_k - y_k)^2\right]^{1/2}$ $d(x, y) = \left[\sum_{k=1}^n (y_k - x_k)^2\right]^{1/2}$ $\therefore d(x, y) = d(y, x)$

Santosh Shivla Dhamone

Aim

Definition of Metric

Notes and Some Standar

Practical No-1

(4) Let
$$x = (x_1, x_2, ..., x_n), y = (y_1, y_2, ..., y_n)$$
 and $z = (z_1, z_2, ..., z_n)$ be the points in R^n

$$d(x, y) = \left[\sum_{k=1}^n (x_k - y_k)^2\right]^{1/2}$$

$$d(x, y) = \left[\sum_{k=1}^n [(x_k - z_k) + (z_k - y_k)]^2\right]^{1/2}$$

$$d(x, y) = \left[\sum_{k=1}^n (a_k + b_k)^2\right]^{1/2}$$
 where
$$a_k = (x_k - z_k)b_k = (z_k - y_k)$$

By Minkowiski Inequality we get,

 $d(x,y) \le \left[\sum_{k=1}^{n} (a_k)^2\right]^{1/2} + \left[\sum_{k=1}^{n} (b_k)^2\right]^{1/2}$ $d(x,y) \le d(x,z) + d(z,y)$ By (1),(2),(3) and (4), we get d is metric for set R^2 .