

Art's Commerce and Science College,Onde Tal:- Vikramgad, Dist:- Palghar Topology of Metric Spaces

My Inspiration Shri. V.G. Patil Saheb

Santosh Shivlal Dhamone

Practical No-2 Open Sets, Closed Sets

Practical No 2: Metric Spaces

Santosh Shivlal Dhamone

Assistant Professor in Mathematics Art's Commerce and Science College,Onde Tal:- Vikramgad, Dist:- Palghar

santosh2maths@gmail.com

August 12, 2021

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Contents

My Inspiration Shri. V.G. Patil Saheb

Santosh Shivlal Dhamone

Practical No-2 Open Sets, Closed Set

Practical No-2Open Sets, Closed Sets

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

My Inspiration Shri. V.G. Patil Saheb

Santosh Shivlal Dhamone

Practical No-2

Open Sets, Closed Sets

Example 1: [Metric Spaces] 1 d(x, y) = |x - y| in R. 2 $d(x, y) = \left[\sum_{i=1}^{n} (x_i - y_i)^2\right]^{\frac{1}{2}}$ in \mathbb{R}^n . 3 d(x, y) = ||x - y|| in a normed space. 4 Let (X, ρ) , (Y, σ) be metric spaces and define the Cartesian product $X \times Y = \{(x, y) | x \in X, y \in Y\}$. Then the product measure $\tau((x_1, y_1), (x_2, y_2)) = [\rho(x_1, x_2)^2 + \sigma(y_1, y_2)^2]^{\frac{1}{2}}.$ **5** (Subspace) (Y, \overline{d}) of (X, d) if $Y \subset X$ and $d = d_{|Y \times Y}$ 6 I^{∞} . Let X be the set of all bounded sequences of

complex numbers, i.e., $x = (\xi_i)$ and $|\xi_i| \le c_x, i$. Then

$$d(x,y) = \sup_{i \in N} |\xi_i - \eta_i|$$

My Inspiration Shri. V.G. Patil Saheb

Santosh Shivlal Dhamone

Practical No-2

Example 2: 1 Show that \overline{d} is a metric on C[a, b], where

$$\bar{d}(x,y) = \int_a^b |x(t) - y(t)| dt.$$

- 2 Show that the discrete metric is a metric.
- **3** Sequence space *s*: set of all sequences of complex numbers with the metric

$$d(x,y) = \sum_{i=1}^{\infty} \frac{1}{2^i} \frac{|\xi_i - \eta_i|}{1 + |\xi_i - \eta_i|}.$$
 (1)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Santosh Shivlal Dhamone

Practical No-2

Open Sets, Closed Sets

Solution:

(1) $\bar{d}(x,y) = 0 \iff -x(t)-y(t) = 0$ for all $t \in [a, b]$ because of the continuity. We have $\bar{d}(x,y) \ge 0$ and $\bar{d}(x,y) = \bar{d}(y,x)$ trivially. We can argue the triangle inequality as follows::

$$ar{d}(x,y)=\int_a^b|x(t)-y(t)|dt\leq\int_a^b|x(t)-z(t)|dt+\int_a^b$$

(2) Left as an exercise.

(3) We show only the triangle inequality. Let $a, b \in R$. Then we have the inequalities

 $\frac{|a+b|}{1+|a+b|} \leq \frac{|a|+|b|}{1+|a|+|b|} \leq \frac{|a|}{1+|a|} + \frac{|b|}{1+|b|},$ where in the first step we have used the monotonicity of the function and the set of th

Santosh Shivlal Dhamone

Practical No-2

Open Sets, Closed Set

$$f(x) = \frac{x}{1+x} = 1 - \frac{1}{1+x}, \text{ for } x > 0.$$

Substituting $a = \xi_i - \zeta_i$ and $b = \zeta_i - \eta_i$, where $x = (\xi_i), y = (\eta_i),$ and $z = (\zeta_i)$ we get
$$\frac{|\xi_i - \eta_i|}{1+|\xi_i - \eta_i|} \le \frac{|\xi_i - \zeta_i|}{1+|\xi_i - \zeta_i|} + \frac{|\zeta_i - \eta_i|}{1+|\zeta_i - \eta_i|}.$$

If we multiply both sides by $\frac{1}{2^{i}}$ and sum over from i = 1 to ∞ we get the stated result.

Open Sets, Closed Sets

My Inspiration Shri. V.G. Patil Saheb

Santosh Shivlal Dhamone

Practical No-2 Open Sets, Closed Sets [Open Ball, Closed Ball, Sphere] 1 $B(x_0, r) = \{x \in X | d(x, x_0) < r\}$ 2 $\overline{B}(x_0, r) = \{x \in X | d(x, x_0) \le r\}$ 3 $S(x_0, r) = \{x \in X | d(x, x_0) = r\}$ [Open, Closed, Interior]

1 M is open if contains a ball about each of its points.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- 2 $K \subset X$ is closed if $K^c = X K$ is open.
- **3** $B(x_0;)$ denotes the neighborhood of x_0 .
- 4 Int(M) denotes the interior of M.

Santosh Shivlal Dhamone

Practical No-2 Open Sets, Closed Sets [Continuous] Let X = (X, d) and $Y = (Y, \overline{d})$ be metric spaces. The mapping $T : X \to Y$ is continuous at $x_0 \in X$ if for every > 0 there is > 0 such that

 $ar{d}(\mathit{Tx},\mathit{Tx}_0)<$, x such that $d(x,x_0)<$.

My Inspiration Shri. V.G. Patil Saheb

Santosh Shivlal Dhamone

Practical No-2 Open Sets, Closed Sets

Example 3: ℓ^{∞} is not separable.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Santosh Shivlal Dhamone

Practical No-2 Open Sets, Closed Sets Solution: Let $y = (\eta_i)$ where $\eta_i = 0, 1$. There are uncountably many y's. If we put small balls with radius $\frac{1}{3}$ at the y's they will not intersect. It follows that if $M \subset I^{\infty}$ is dense in I^{∞} , then M is uncountable. Therefore I^{∞} is not separable.

My Inspiration Shri. V.G. Patil Saheb

Santosh Shivlal Dhamone

Practical No-2 Open Sets, Closed Sets

Example 4: Show that l^p , $1 \le p < \infty$ is separable.

Santosh Shivlal Dhamone

Practical No-2 Open Sets, Closed Sets Solution: Let M the set of all sequences of the form $x = (\xi_1, \xi_2, ..., \xi_n, 0, 0, ...)$, where n is any positive integer and the ξ_i s are rational. M is countable. We argue that M is dense in l^p as follows. Let $y = (\eta_i) \in l^p$ be arbitrary. Then for every > 0 there is an n such that

$$\sum_{i=n+1}^{\infty} |\eta_i|^p < \frac{p}{2}.$$

Since the rationals are dense in R, for each η_i there is a rational ξ_i close to it. Hence there is an $x \in M$ such that

$$\sum_{i=1}^n |\eta_i - \xi_i| < \frac{p}{2}.$$

It follows that d(y, x) < ve.

・ロト ・ ロ・ ・ ヨ・ ・ ヨ・ ・ ロ・

My Inspiration Shri. V.G. Patil Saheb

Santosh Shivlal Dhamone

Practical No-2 Open Sets, Closed Sets

Example 5:

A convergent sequence (x_n) in X is bounded and its limit x is unique.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

2 If
$$x_n \to x$$
 and $y_n \to y$ in X, then $d(x_n, y_n) \to d(x, y)$.

Santosh Shivlal Dhamone

Practical No-2 Open Sets, Closed Sets

Solution:

(1) Suppose that $x_n \to x$. Then, taking = 1 we can find an N such that $d(x_n, x) < 1$ for all n > N. By the triangle inequality we have

$$d(x_n, x) < 1 + \max d(x_1, x), d(x_2, x), ..., d(x_N, x).$$

Therefore (x_n) is bounded. If $x_n \to x$ and $x_n \to z$, then

 $0 \leq d(x,z) \leq d(x_n,x) + d(x_n,z)
ightarrow 0$ as $n
ightarrow \infty$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

and uniqueness of the limit follows.

Santosh Shivlal Dhamone

Practical No-2 Open Sets, Closed Sets

(2) We have

$$d(x_n, y_n) \leq d(x_n, x) + d(x, y) + d(y, y_n),$$

and hence

$$d(x_n, y_n) - d(x, y) \leq d(x_n, x) + d(y_n, y).$$

Interchanging x_n and x, y_n and y, and multiplying by -1 we get

$$d(x,y)-d(x_n,y_n)\leq d(x_n,x)+d(y_n,y).$$

Combining the two inequalities we get

$$|d(x_n, y_n) - d(x, y)| \le d(x_n, x) + d(y_n, y) \to 0 \text{ as } n \to \infty$$