

Art's Commerce and Science College,Onde Tal:- Vikramgad, Dist:- Palghar Topology of Metric Spaces

Santosh Shivlal

[Practical No-2](#page-2-0)

Practical No 2: Metric Spaces

Santosh Shivlal Dhamone

Assistant Professor in Mathematics Art's Commerce and Science College,Onde Tal:- Vikramgad, Dist:- Palghar

santosh2maths@gmail.com

August 12, 2021

Contents

Santosh Shivlal

[Practical No-2](#page-2-0)

1 [Practical No-2](#page-2-0) [Open Sets, Closed Sets](#page-6-0)

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

Santosh Shivlal Dhamone

[Practical No-2](#page-2-0)

- Example 1: [Metric Spaces] 1 $d(x, y) = |x - y|$ in R. **2** $d(x, y) = [\sum_{i=1}^{n} (x_i - y_i)^2]^{\frac{1}{2}}$ in R^n . 3 $d(x, y) = ||x - y||$ in a normed space. 4 Let (X, ρ) , (Y, σ) be metric spaces and define the Cartesian product $X \times Y = \{(x, y) | x \in X, y \in Y\}.$ Then the product measure $\tau((x_1,y_1),(x_2,y_2))=[\rho(x_1,x_2)^2+\sigma(y_1,y_2)^2]^{\frac{1}{2}}.$ 5 (Subspace) (Y, \bar{d}) of (X, d) if $Y \subset X$ and $d = d_{|Y \times Y}$.
	- 6 $\sqrt{ }$ Let X be the set of all bounded sequences of complex numbers, i.e., $x = (\xi_i)$ and $|\xi_i| \leq c_x$, i. Then

$$
d(x,y) = \sup_{i \in N} |\xi_i - \eta_i|
$$

Santosh Shivlal

[Practical No-2](#page-2-0)

Example 2: **1** Show that \bar{d} is a metric on $C[a, b]$, where

$$
\bar{d}(x,y)=\int_a^b |x(t)-y(t)|dt.
$$

2 Show that the discrete metric is a metric.

3 Sequence space s: set of all sequences of complex numbers with the metric

$$
d(x,y) = \sum_{i=1}^{\infty} \frac{1}{2^i} \frac{|\xi_i - \eta_i|}{1 + |\xi_i - \eta_i|}.
$$
 (1)

Santosh Shivlal Dhamone

[Practical No-2](#page-2-0)

Solution:

(1) $\bar{d}(x, y) = 0 \iff -x(t)-y(t) = 0$ for all $t \in [a, b]$ because of the continuity. We have $d(x, y) > 0$ and $\overline{d}(x, y) = \overline{d}(y, x)$ trivially. We can argue the triangle inequality as follows:

$$
\bar{d}(x,y)=\int_a^b |x(t)-y(t)|dt\leq \int_a^b |x(t)-z(t)|dt+\int_a^b
$$

(2) Left as an exercise.

(3) We show only the triangle inequality. Let $a, b \in R$. Then we have the inequalities

 $|a + b|$ $1 + |a + b|$ $\leq \frac{|a|+|b|}{1+|b|}$ $1 + |a| + |b|$ $\leq \frac{|a|}{1}$ $1+|a|$ $+$ $|b|$ $1 + |b|$, where in the first step we have used the monotonicity of the function of the service of the servic

[Practical No-2](#page-2-0)

$$
f(x) = \frac{x}{1+x} = 1 - \frac{1}{1+x}, \text{ for } x > 0.
$$

Substituting $a = \xi_i - \zeta_i$ and $b = \zeta_i - \eta_i$, where $x = (\xi_i)$, $y = (\eta_i)$, and $z = (\zeta_i)$ we get

$$
\frac{|\xi_i - \eta_i|}{1 + |\xi_i - \eta_i|} \le \frac{|\xi_i - \zeta_i|}{1 + |\xi_i - \zeta_i|} + \frac{|\zeta_i - \eta_i|}{1 + |\zeta_i - \eta_i|}.
$$

If we multiply both sides by $\frac{1}{2^i}$ and sum over from $i = 1$ to ∞ we get the stated result.

KO K K Ø K K E K K E K V K K K K K K K K K

Open Sets, Closed Sets

Santosh Shivlal Dhamone

[Practical No-2](#page-2-0) [Open Sets, Closed Sets](#page-6-0)

[Open Ball, Closed Ball, Sphere] **1** $B(x_0, r) = \{x \in X | d(x, x_0) < r\}$ 2 $B(x_0, r) = \{x \in X | d(x, x_0) \le r\}$ 3 $S(x_0, r) = \{x \in X | d(x, x_0) = r\}$ [Open, Closed, Interior]

 \blacksquare M is open if contains a ball about each of its points.

KORK EXTERNE PROVIDE

- $2 K \subset X$ is closed if $K^c = X K$ is open.
- 3 $B(x_0; \cdot)$ denotes the neighborhood of x_0 .
- 4 Int(M) denotes the interior of M.

[Practical No-2](#page-2-0) [Open Sets, Closed Sets](#page-6-0) [Continuous] Let $X = (X, d)$ and $Y = (Y, \overline{d})$ be metric spaces. The mapping $T : X \rightarrow Y$ is continuous at $x_0 \in X$ if for every > 0 there is > 0 such that

 $d(Tx, Tx_0) < x$ such that $d(x, x_0) < x$.

Santosh Shivlal

[Practical No-2](#page-2-0) [Open Sets, Closed Sets](#page-6-0)

Example 3: ℓ^{∞} is not separable.

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

[Practical No-2](#page-2-0)

 $P_{\text{non-Sets. Closed See}}$ Solution: Let $y = (\eta_i)$ where $\eta_i = 0, 1$. There are uncountably many y 's. If we put small balls with radius 1 $\frac{1}{3}$ at the y's they will not intersect. It follows that if $\tilde{M} \subset I^{\infty}$ is dense in I^{∞} , then M is uncountable. Therefore l^{∞} is not separable.

Santosh Shivlal

[Practical No-2](#page-2-0) [Open Sets, Closed Sets](#page-6-0)

Example 4: Show that l^p , $1 \leq p < \infty$ is separable.

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

[Practical No-2](#page-2-0) [Open Sets, Closed Sets](#page-6-0)

Solution: Let M the set of all sequences of the form $x = (\xi_1, \xi_2, ..., \xi_n, 0, 0, ...)$, where *n* is any positive integer and the ξ_i s are rational. M is countable. We argue that M is dense in I^p as follows. Let $y = (\eta_i) \in I^p$ be arbitrary. Then for every > 0 there is an *n* such that

$$
\sum_{i=n+1}^{\infty} |\eta_i|^p < \frac{p}{2}.
$$

Since the rationals are dense in R, for each η_i there is a rational ξ_i close to it. Hence there is an $x \in M$ such that

$$
\sum_{i=1}^n |\eta_i - \xi_i| < \frac{\rho}{2}.
$$

It follows that $d(y, x) < \nu e$.

4 0 > 4 4 + 4 = + 4 = + = + + 0 4 0 +

Santosh Shivlal

[Practical No-2](#page-2-0) [Open Sets, Closed Sets](#page-6-0)

Example 5:

1 A convergent sequence (x_n) in X is bounded and its limit x is unique.

KORK ERKER ADAM ADA

2 If
$$
x_n \to x
$$
 and $y_n \to y$ in X, then
\n $d(x_n, y_n) \to d(x, y)$.

[Practical No-2](#page-2-0) [Open Sets, Closed Sets](#page-6-0) Solution:

(1) Suppose that $x_n \to x$. Then, taking $= 1$ we can find an N such that $d(x_n, x) < 1$ for all $n > N$. By the triangle inequality we have

$$
d(x_n,x) < 1 + \max d(x_1,x), d(x_2,x),...,d(x_N,x).
$$

Therefore (x_n) is bounded. If $x_n \to x$ and $x_n \to z$, then

 $0 \le d(x, z) \le d(x_n, x) + d(x_n, z) \to 0$ as $n \to \infty$

KORKARYKERKER POLO

and uniqueness of the limit follows.

[Practical No-2](#page-2-0) [Open Sets, Closed Sets](#page-6-0)

(2) We have

$$
d(x_n,y_n)\leq d(x_n,x)+d(x,y)+d(y,y_n),
$$

and hence

$$
d(x_n,y_n)-d(x,y)\leq d(x_n,x)+d(y_n,y).
$$

Interchanging x_n and x, y_n and y, and multiplying by -1 we get

$$
d(x,y)-d(x_n,y_n)\leq d(x_n,x)+d(y_n,y).
$$

Combining the two inequalities we get

$$
|d(x_n,y_n)-d(x,y)|\leq d(x_n,x)+d(y_n,y)\to 0 \text{ as } n\to\infty
$$