			$(2\frac{1}{2} \text{ Hours})$	[Total Warks, 15
N.	B.: (1) A 2) F	Il questions are compulsory. igures to the right indicate marks for respective subquestions.	
1.	(a)	Atte	empt any one question:	
			Let V be a finite dimensional real vector space and W be a subs $\dim V/W = \dim V - \dim W$.	. (8)
		(ii)	Let V be a finite dimensional inner product space over \mathbb{R} . If such that (1) $f(0) = 0$ (2) $ f(x) - f(y) = x - y , \forall x, y \in$ is orthogonal linear transformation.	$f: V \to V$ is a map V , then show that f (8)
	(b)		empt any three questions:	
		(i)	Let $A = \begin{pmatrix} 1 & 2 & 3 \\ -1 & 0 & 1 \end{pmatrix}$. A linear transformation $T: \mathbb{R}^3 \to \mathbb{R}^2$ is defined as	efined by $T(X) = AX$
			(X being a column vector in \mathbb{R}^3). Find ker T, a basis of ker T find Im T.	and $\mathbb{R}^3/\ker T$. Also (4)
		(ii)	Let V be an n -dimensional inner product space over $\mathbb R$ and let V such that $\dim W = n-1$. Let u be a unit vector orthogon $T: V \to V$ defined by $Tv = v - 2\langle v, u \rangle u$ is an orthogonal linear that $T(w) = w$, $\forall w \in W$ and $T(u) = -u$.	nal to W . Show that
		(iii)	Let A be 3×3 orthogonal matrix such that det $A = 1$. Show that A.	that 1 is eigenvalue of (4)
		(iv)	Using Cayley Hamilton Theorem, find A^{100} where $A = \begin{pmatrix} \frac{3}{2} & \frac{1}{2} \\ -\frac{1}{2} & \frac{1}{2} \end{pmatrix}$	`
2.	(a)	Att	empt any one questions:	•
			Let A be an $n \times n$ real matrix. Prove that the following states	nents are equivalent.
		•	(1) A is diagonalizable.	
			(2) \mathbb{R}^n has a basis of eigenvectors of A .	(8)
		(ii)	Let A be an $n \times n$ real symmetric matrix. Show that the characteristic real.	eteristic roots of A are (8)
	(b)	Att	empt any three questions:	
		(i)	Let A be an $n \times n$ real matrix. If every non-zero $X \in \mathbb{R}^n$ is an show that $A = \lambda I_n$ for some $\lambda \in \mathbb{R}$.	eigenvector of A , then \cdot (4)
		(ii)	Let A be an $n \times n$ matrix which has eigenvalues 1 and -1 . If A show that $A = A^{-1}$.	is diagonalizable ther
		(iii)	If A and B are $n \times n$ real orthogonally diagonalizable matrices then show that AB is also orthogonally diagonalizable.	s such that $AB = BA$ (4)
		(iv)	Show that every quadratic form $Q(x_1, x_2, \dots, x_n)$ over $\mathbb R$ can be	
			form $\sum_{i=1}^{n} \lambda_i y_i^2$ by an orthogonal change of variables $X = PY$, X $Y = (y_1, y_2, \dots, y_n)^t.$	
			$V = (\eta_1, \eta_2, \dots, \eta_n)^t$	(4)

3: (a) Attempt any one questions:

- (i) Let G be a cyclic group of order n generated by a. Show that G has a unique subgroup of order d for each divisor d of n.
- (ii) Let G, G' be groups and $f: G \to G'$ be a homomorphism of groups. Show that (8)
 - (1) f(e) = e' where e, e' are identity elements of G, G' respectively.
 - (2) $f(a^{-1}) = (f(a))^{-1}$ for each $a \in G$
 - (3) $f(a^n) = (f(a))^n$ for each $a \in G$ and each $n \in \mathbb{Z}$.

Further if f is onto, then show that

- (1) G is abelian implies G' is abelian
- (2) G is cyclic and $G = \langle a \rangle$ implies G' is cyclic and $G' = \langle f(a) \rangle$.
- (b) Attempt any three questions:
 - (i) Let H, K be subgroups of a group G. Show that HK is a subgroup of G if and only if HK = KH.
 - (ii) Let H be finite subset of group G such that $ab \in H$ whenever a and $b \in H$. Show that H is subgroup of G.
 - (iii) Exhibit an element of order 20 in S_9 , the symmetric group on 9 symbols. (4)
 - (iv) Let G, G' be groups, $f, g: G \to G'$ be group homomorphisms and

$$H = \{x \in G : f(x) = g(x)\}.$$

Prove or disprove: H is a subgroup of G.

(4)

4. Attempt any three questions:

- (a) Let $V = \left\{ \begin{pmatrix} a & b \\ 0 & c \end{pmatrix} : a, b, c \in \mathbb{R} \right\}$ be vector space of all 2×2 upper triangular matrices and $W = \left\{ \begin{pmatrix} a & 0 \\ 0 & c \end{pmatrix} : a, c \in \mathbb{R} \right\}$ be its subspace. Let $U = \left\{ \begin{pmatrix} 0 & b \\ 0 & 0 \end{pmatrix} : b \in \mathbb{R} \right\}$. Show that $V/W \cong U$.
- (b) Let V be an n-dimensional inner product space. Suppose $B = \{e_i\}_{i=1}^n$ and $B' = \{f_i\}_{i=1}^n$ are orthonormal bases of V. If $T: V \to V$ is a linear transformation such that $T(e_i) = f_i$ for i = 1 to n, then show that T is orthogonal transformation. (5)
- (c) Let $u = (a, b, c) \in \mathbb{R}^3$. Find eigenvalues and eigenvectors of $u^t u$ and show that $u^t u$ is diagonalizable.
- (d) Let A be any $n \times n$ diagonalizable matrix. Show that For any positive integer k, A^k is also diagonalizable. (5)
- (e) If G is a finite abelian group having 2 distinct elements of order 2, show that $4 \mid o(G)$. (5)
- (f) Show that the map $f: GL_n(R) \to GL_n(R)$ defined by $f(A) = (A^t)^{-1}$ is a group homomorphism. Is it an automorphism? Justify your answer. (5)