$(2\frac{1}{2})$ Hours

Total Marks: 75

N.B.: (1) All questions are compulsory

- (2) Figures to the right indicate marks for respective subquestions.
- Q1a) Attempt any one question.

(8)

- i) Let S be an open subset of \mathbb{R}^n and $f: S \to \mathbb{R}^m$ with $f(x) = (f_1(x), f_2(x), \dots, f_m(x))$. Let $a \in S$. Then show that f is continuous at a iff each f_k is continuous at a, $1 \le k \le m$.
- ii) Let S be an open subset of \mathbb{R}^n and $f, g: S \to \mathbb{R}^m$ and let $a \in S$. (8) If $\lim_{x \to a} f(x) = b$ and $\lim_{x \to a} g(x) = c$ then using $\epsilon \delta$ definition, prove that
 - 1) $\lim_{x\to a} ||f(x)|| = ||b||$
 - 2) $\lim_{x\to a} (f(x) \cdot g(x)) = b \cdot c$
- b) Attempt any three questions
- i) State and prove the mean value theorem for scalar fields.

(4)

ii) Let S be an open subset of \mathbb{R}^n and $f: S \to \mathbb{R}$ and let $a \in S$. (4) Define the partial derivative $D_k f$ of f at a. Find the partial derivatives of f at (0,0) for

$$f(x,y) = \begin{cases} \frac{x+y}{x-y}, & \text{if } x \neq y \\ 0, & \text{if } x = y \end{cases}$$

- iii) Show that $\lim_{(x,y)\to(0,0)} \frac{x^2-y^2}{x^2+y^2}$ does not exists. (4)
- iv) Let $f: \mathbb{R}^2 \to \mathbb{R}$ be defined by $f(x, y) = \sqrt{|xy|}$. Show that f is continuous at (0,0).
- Q2 a) Attempt any one question.
 - i) Let S be an open subset of \mathbb{R}^n and $f: S \to \mathbb{R}$ be differentiable at $a \in S$ with total derivative Df(a). Show that f'(a; y) exists for all $y \in \mathbb{R}^n$ and f'(a; y) = Df(a) and $f'(a; y) = \sum_{k=1}^n D_k f(a) y_k = \nabla f(a) \cdot y$ for all $y \in \mathbb{R}^n$.
 - ii) Let S be an open subset of \mathbb{R}^2 and $f: S \to \mathbb{R}$ be such that $D_1 f, D_2 f, D_{12} f, D_{21} f$ exists on S. If $(a, b) \in S$ and $D_{12} f, D_{21} f$ are continuous on S, then show that $D_{12} f(a, b) = D_{21} f(a, b)$.

- b) Attempt any three questions
- i) Let z = f(x, y) is a differentiable scalar field and r(t) = (x(t), y(t)) is a differentiable function of t on an interval I, then show that $\frac{\partial z}{\partial t} = \frac{\partial z}{\partial x} \frac{\partial x}{\partial t} + \frac{\partial z}{\partial y} \frac{\partial y}{\partial t}$.
- ii) Let S be an open subset of \mathbb{R}^n and $f: S \to \mathbb{R}$ be differentiable on (4) S. If $\nabla f(x) = 0$, $\forall x \in B(a, r)$ for $a \in S$, then show that f is constant on B(a, r).
- iii) Determine whether f is differentiable at (0,0) where (4)

$$f(x,y) = \begin{cases} \frac{x^2y^2}{x^2+y^2} & \text{, if } (x,y) \neq (0,0) \\ 0 & \text{, if } (x,y) = (0,0) \end{cases}$$

- iv) Given $z = u(x, y)e^{ax+by}$ and $\frac{\partial^2 u}{\partial x \partial y} = 0$. Find the values of the constants a, b such that $\frac{\partial^2 z}{\partial x \partial y} \frac{\partial z}{\partial x} \frac{\partial z}{\partial y} + z = 0$. (4)
- Q3. a) Attempt any one question.
 - i) For the surface r(u,v) described by the vector equation $r(u,v) = X(u,v)\overline{\iota} + Y(u,v)\overline{\jmath} + Z(u,v)\overline{k}$, $(u,v) \in T$, where X,Y,Z are differentiable on T in u –v plane. If C is a smooth curve lying on the surface then prove that $\frac{\partial r}{\partial u} \times \frac{\partial r}{\partial v}$ is normal to C at each point.
 - ii) State and prove Divergence Theorem for a simple solid region V bounded by an orientable closed surface S which can be projected on XY,YZ and XZ planes.
 - b) Attempt any three questions
 - i) Find the equation of the tangent plane to the given parametric surface r(u,v) = (x(u,v),y(u,v),z(u,v)) for x = u+v, y = u-v, $z = u^2-v^2$ at (1,0,0).
 - ii) Evaluate the surface integral $\iint_{S} zds$, where S is the surface of the cylinder $y^2 + z^2 = 1$ between the planes x = 1 and x = 2.
 - iii) Use stokes' Theorem to evaluate $\int_C \bar{F} \cdot d\bar{r}$, where $\bar{F} = y \bar{\imath} + xz \bar{\jmath} + z^2 \bar{k}$ and C is the boundary of the surface of the plane z=x+4 cut by the cylinder $x^2 + y^2 = 4$.

iv) Assuming S and V satisfy the conditions of the Divergence Theorem and scalar field f and g have continuous partial derivatives, with usual notation, prove that
1)∫∫_S (f∇g). n̂ds = ∫∫_V (f∇²g + ∇f.∇g)dV
2)∫∫_S (f∇g - g∇f). n̂ds = ∫∫_V (f∇²g - g∇²f)dV

Q4. Attempt any three questions

- a) Let $f: \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation. Show that f is continuous at each $a \in \mathbb{R}^n$. (5)
- b) Show that the sum of x, y, z intercepts of any tangent plane to the surface $\sqrt{x} + \sqrt{y} + \sqrt{z} = \sqrt{c}$ is constant. (5)
- c) If $f: \mathbb{R}^3 \to \mathbb{R}^2$ is differentiable at (0,0) and f(0,0,0) = (1,2), $Df(0,0,0) = \begin{pmatrix} 1 & 2 & 3 \\ 0 & 0 & 1 \end{pmatrix}$. If $g: \mathbb{R}^2 \to \mathbb{R}^2$ is defined by (x,y) = (x+2y+1, 3xy), then find $D(g^\circ f)(0,0,0)$.
- d) Use chain rule and find $\frac{\partial w}{\partial s}$, $\frac{\partial w}{\partial t}$ at s = 0, t = 1 where w = xy + yz + zx, x(s,t) = st, $y(s,t) = e^{st}$, $z(s,t) = t^2$. (5)
- Use divergence theorem to evaluate $\iint_S \overline{F} \cdot \hat{n} \, ds$, where $\overline{F} = x^2 \overline{\iota} + y^2 \overline{\jmath} + z^2 \overline{k}$ and S the surface of solid bounded by the paraboloid $z = x^2 + y^2$ and the plane z = 1.
- Evaluate the surface integral $\iint_S \bar{F} \cdot \hat{n} ds$, where $\bar{F} = y \bar{\iota} + x \bar{\jmath} + z \bar{k}$ and S is the surface of the parabolic cylinder $y = x^2$ cut by the planes y = 1, z = 0 and z = 2.