(2 1/2 Hours)

[Total Marks: 75

N.B.: (1) All questions are compulsory.

(2) Figures to the right indicate marks for respective subquestions.

(a) Attempt any one of the following:

[8]

Show that the rate of convergence of the secant method is $\frac{1}{2}$ ($1\pm\sqrt{5}$).

Show that the Newton – Raphson iterative formula applied to the function $f(x)=x^2-a$, a>0leads to the iterative formula

$$x_{k+1} = \frac{1}{2} (x_k + \frac{a}{x_k}), x_0 > 0$$

for evaluating \sqrt{a} . Also for the function $f(x) = x^p - a$, show that the sequence given by,

$$x_{k+1} = \frac{1}{p} ((p-1)x_k + \frac{a}{x_k^{p-1}}), x_0 > 0$$
 can be used to evaluate $a^{\frac{1}{p}}$.

(b) Attempt any three of the following:

[12]

- Find the number of terms n to be taken in the expansion of e^x correct to 6 places of decimals,
- Determine the iterative formula to find \sqrt{N} where N is a positive integer, using Raphson method.
- Taking $x_0 = 0$ and $x_1 = 1$, solve by Regula-Falsi method the equation $x \cos x = 0$. Perform two
- Find a negative root of $x^3 2x + 5 = 0$, using Fixed point iterative method. Perform two iterations.
- Attempt any one of the following:

- If p_k is an approximation of the root p of the polynomial equation $P_n(x) = a_0 x^n + a_1 x^{n-1} + \ldots + a_{n-1} x^{n-1}$ + a_n =0, then show that the next approximation to the root using Birge-Vieta method is $p_{k+1} = p_k - \frac{b_n}{c_{n-1}}$, k = 0, 1, 2... where b_k satisfies the recurrence relation $b_k = a_k + p_{k-1}$ with $b_0 = a_0$ and c_k satisfies the recurrence relation $c_k = b_k + pc$ $_{k-1}$ and $c_0 = b_0$.
- Let A be the coefficient matrix of the system of equations. Explain how to decompose A into the product of a lower triangular matrix L and upper triangular matrix U using Triangularization method.
- Attempt any three of the following:

[12]

- Using synthetic division find the value of P(2), P'(2) for the polynomial $x^5 2x^4 + 4x^3 x^2 7x + 5 = 0$.
- Using Strum's sequence obtain the exact number of real root and complex roots of the polynomial $x^3 + x - 1 = 0$.
- Decompose A given below into lower triangular matices L and L^{T} such that $A = LL^{T}$ using Cholesky's method.

$$A = \begin{bmatrix} 9 & 1 & 0 \\ 1 & 9 & 1 \\ 0 & 1 & 9 \end{bmatrix}$$

 $A = \begin{bmatrix} 9 & 1 & 0 \\ 1 & 9 & 1 \\ 0 & 1 & 9 \end{bmatrix}$ The system of equations AX =b is to be solved iteratively by $X^{(k+1)} = M X^{(k)} + b$, where $M = -D^{-1}(L + U)$ and D is the identity matrix. Suppose $A = \begin{bmatrix} 1 & k \\ 3k & 1 \end{bmatrix}$, where $k \neq \sqrt{3}/3$, k real.

ITURN OVER

VG-Con.: 8355-15.

QP Code: 24900

Find necessary and sufficient condition on k for convergence of Jacobi iterative method.

(a) Attempt any one of the following:

- Let A be a real symmetric matrix. Using Jacobi method reduce A to a diagonal matrix by a series of orthogonal transformations S_1 , S_2 , in 2×2 subspaces. Let $|a_{ik}|$ be the numerically largest off diagonal element of the matrix S_1^* such that S_1^*A S^* is diagonalized and hence show that $\tan 2\theta = \frac{2a_{ik}}{a_{il}-a_{kk}}$, $-\frac{\pi}{4} \le \theta \le \frac{\pi}{4}$
- (ii) Define condition number of a matrix A. Let $A(\infty) = \begin{bmatrix} 0.1 &$ Determine a such that $cond(A(\alpha))$ is minimized. Use maximum absolute row sum norm.
- (b) Attempt any three of the following:

[12]

Let A be a symmetric matrix given below. Apply Jacobi method to find orthogonal transformations S_1 and S_2 .

$$A = \left[\begin{array}{rrr} 1 & 2 & -1 \\ 2 & 1 & -1 \\ -1 & 2 & 1 \end{array} \right]$$

- (ii) Obtain first iteration matrix (A₂) and determine eigen value for $A = \begin{bmatrix} 1 & 1 \\ 4 & 2 \end{bmatrix}$ using Rutishauser method.
- Find the largest eigen value and eigen vector in magnitude of the following matrix using (iii) Power method at the end of second iteration.

$$A = \begin{bmatrix} 1 & 1 \\ 5 & 3 \end{bmatrix}$$

Find the smallest eigen value in magnitude of the matrix A using inverse power method at the end of second iteration. Also obtain corresponding eigen vector. Take initial approximation as $\begin{bmatrix} 1 & 1 \end{bmatrix}^T$ near 3.

$$A = \begin{bmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{bmatrix}.$$

Attempt any three of the following:

[15]

- Find a root by Secant method correct upto 4 decimal places for the equation $e^{-x} = \sin x$
- Find the inverse of the following matrix using LU decomposition method. Take $l_{11} = l_{22} = l_{33} = 1$.

$$\begin{pmatrix}
3 & 2 & 1 \\
2 & 3 & 2 \\
1 & 2 & 2
\end{pmatrix}$$

(iii) Find approximately the eigenvalues of the following matrix using Rutishauser method. Apply the procedure until the elements of the lower triangular part are less than 0.005 in magnitude.

$$\begin{pmatrix} 3 & 1 \\ 1 & 1 \end{pmatrix}$$

- (iv) Perform one iteration with Muller method for the equation $x^3 (1/2) = 0$, $x_0 = 0$, $x_1 = 1$,
- (v) Solve the following system of equations using Jacobi iterative method. Do one iteration. $4x_1 + x_2 + x_3 = 2$, $x_1 + 5x_2 + 2x_3 = -6$, $x_1 + 2x_2 + 3x_3 = -4$. Take the initial approximation as $\mathbf{x}^{(0)} = [0.5, -0.5, -0.5]^{\mathrm{T}}$.
- (vi) Find the largest eigen value in modulus and the corresponding eigen vector of the matrix A

VG-Con.: 8355-15.

QP Code: 24900

using power method at the end of second iteration.
$$A = \begin{bmatrix} -15 & 4 & 3 \\ 10 & -12 & 6 \\ 20 & -4 & 2 \end{bmatrix}$$
Take initial vector as [1, 1, 1]^T

Take initial vector as $[1 \ 1 \ 1]^T$.

VG-Con.: 8355-15.