

Art's Commerce and Science College, Onde Tal:- Vikramgad, Dist:- Palghar USMT 402: Linear Algebra-II

My Inspiration Shri. V.G. Patil Saheb Dr. V. S. Sonawne

Dhamone

Practical No-1 Linear transformation, Kernel, Rank-Nullity Theorem

Santosh Shivlal Dhamone

Assistant Professor in Mathematics Art's Commerce and Science College,Onde Tal:- Vikramgad, Dist:- Palghar

santosh2maths@gmail.com

January 7, 2022

Contents

ly Inspiration nri. V.G. Patil Saheb Dr. V. S. Sonawne

Santosh Shivl Dhamone

> Linear transformation, Kernel, Rank-Nullity Theorem

My Inspiratio hri. V.G. Pa Saheb Dr. V. S. Sonawne

Santosh Shiv Dhamone

Linear Transformations

Definition Let $\mathcal V$ and $\mathcal W$ be vector spaces, and let $f\colon \mathcal V\to \mathcal W$ be a function from $\mathcal V$ to $\mathcal W$. (That is, for each vector $\mathbf v\in \mathcal V$, $f(\mathbf v)$ denotes exactly one vector of $\mathcal W$.) Then f is a **linear transformation** if and only if both of the following are true:

(1)
$$f(\mathbf{v}_1 + \mathbf{v}_2) = f(\mathbf{v}_1) + f(\mathbf{v}_2)$$
, for all $\mathbf{v}_1, \mathbf{v}_2 \in \mathcal{V}$

(2)
$$f(c\mathbf{v}) = cf(\mathbf{v})$$
, for all $c \in \mathbb{R}$ and all $\mathbf{v} \in \mathcal{V}$.

My Inspiration
hri. V.G. Pa
Saheb
Dr. V.S.
Sonawne

Santosh Shiv Dhamone

Example

Consider the mapping $f: \mathcal{M}_{mn} \to \mathcal{M}_{nm}$, given by $f(\mathbf{A}) = \mathbf{A}^T$ for any $m \times n$ matrix \mathbf{A} . We will show that f is a linear transformation.

- (1) We must show that $f(\mathbf{A}_1 + \mathbf{A}_2) = f(\mathbf{A}_1) + f(\mathbf{A}_2)$, for matrices \mathbf{A}_1 , $\mathbf{A}_2 \in \mathcal{M}_{mn}$. However, $f(\mathbf{A}_1 + \mathbf{A}_2) = (\mathbf{A}_1 + \mathbf{A}_2)^T = \mathbf{A}_1^T + \mathbf{A}_2^T$ (by part (2) of Theorem $) = f(\mathbf{A}_1) + f(\mathbf{A}_2)$.
- (2) We must show that $f(c\mathbf{A}) = cf(\mathbf{A})$, for all $c \in \mathbb{R}$ and for all $\mathbf{A} \in \mathcal{M}_{mn}$. However, $f(c\mathbf{A}) = (c\mathbf{A})^T = c(\mathbf{A}^T)$ (by part (3) of Theorem 1.12) = $cf(\mathbf{A})$.

Hence, f is a linear transformation.

My Inspiratio hri. V.G. Pa Saheb Dr. V. S. Sonawne

Santosh Shiv Dhamone

Example

Consider the function $g: \mathcal{P}_n \to \mathcal{P}_{n-1}$ given by $g(\mathbf{p}) = \mathbf{p}'$, the derivative of \mathbf{p} . We will show that g is a linear transformation.

- (1) We must show that $g(\mathbf{p}_1 + \mathbf{p}_2) = g(\mathbf{p}_1) + g(\mathbf{p}_2)$, for all $\mathbf{p}_1, \mathbf{p}_2 \in \mathcal{P}_n$. Now, $g(\mathbf{p}_1 + \mathbf{p}_2) = (\mathbf{p}_1 + \mathbf{p}_2)'$. From calculus we know that the derivative of a sum is the sum of the derivatives, so $(\mathbf{p}_1 + \mathbf{p}_2)' = \mathbf{p}_1' + \mathbf{p}_2' = g(\mathbf{p}_1) + g(\mathbf{p}_2)$.
- (2) We must show that $g(c\mathbf{p}) = cg(\mathbf{p})$, for all $c \in \mathbb{R}$ and $\mathbf{p} \in \mathcal{P}_n$. Now, $g(c\mathbf{p}) = (c\mathbf{p})'$. Again, from calculus we know that the derivative of a constant times a function is equal to the constant times the derivative of the function, so $(c\mathbf{p})' = c(\mathbf{p}') = cg(\mathbf{p})$.

Hence, g is a linear transformation.

Vy Inspiration hri. V.G. Patheb Dr. V. S. Sonawne

Santosh Shivl Dhamone

Example

Let $\mathcal V$ be a finite dimensional vector space, and let $\mathcal B$ be an ordered basis for $\mathcal V$. Then every element $\mathbf v \in \mathcal V$ has its coordinatization $[\mathbf v]_{\mathcal B}$ with respect to $\mathcal B$. Consider the mapping $f\colon \mathcal V \to \mathbb R^n$ given by $f(\mathbf v) = [\mathbf v]_{\mathcal B}$. We will show that f is a linear transformation.

Let $\mathbf{v}_1, \mathbf{v}_2 \in \mathcal{V}$. By Theorem 4.20, $[\mathbf{v}_1 + \mathbf{v}_2]_B = [\mathbf{v}_1]_B + [\mathbf{v}_2]_B$. Hence,

$$f(\mathbf{v}_1 + \mathbf{v}_2) = [\mathbf{v}_1 + \mathbf{v}_2]_B = [\mathbf{v}_1]_B + [\mathbf{v}_2]_B = f(\mathbf{v}_1) + f(\mathbf{v}_2).$$

Next, let $c \in \mathbb{R}$ and $\mathbf{v} \in \mathcal{V}$. Again by Theorem 4.20, $[c\mathbf{v}]_B = c[\mathbf{v}]_B$. Hence,

$$f(c\mathbf{v}) = [c\mathbf{v}]_B = c[\mathbf{v}]_B = cf(\mathbf{v}).$$

Thus, f is a linear transformation from \mathcal{V} to \mathbb{R}^n .

My Inspiration
hri. V.G. Pat
Saheb
Dr. V. S.

Santosh Shiv Dhamone

Linear Operators and Some Geometric Examples

An important type of linear transformation is one that maps a vector space to itself.

Definition Let V be a vector space. A **linear operator** on V is a linear transformation whose domain and codomain are both V.

My Inspiration Shri. V.G. Pati Saheb Dr. V. S. Sonawne

Santosh Shivle Dhamone

Example

Reflections: Consider the mapping $f \colon \mathbb{R}^3 \to \mathbb{R}^3$ given by $f([a_1,a_2,a_3]) = [a_1,a_2,-a_3]$. This mapping "reflects" the vector $[a_1,a_2,a_3]$ through the xy-plane, which acts like a "mirror" (see

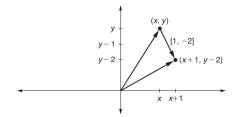


FIGURE 5.1

A translation in \mathbb{R}^2

Now, since

$$f([a_1,a_2,a_3]+[b_1,b_2,b_3]) = f([a_1+b_1,a_2+b_2,a_3+b_3])$$

$$= [a_1+b_1,a_2+b_2,-(a_3+b_3)]$$

$$= [a_1,a_2,-a_3]+[b_1,b_2,-b_3]$$

$$= f([a_1,a_2,a_3])+f([b_1,b_2,b_3]), \text{ and}$$

$$(a_2,a_3]) = f([ca_1,ca_2,ca_3]) = [ca_1,ca_2,-ca_3] = c[a_1,a_2,-a_3] = cf([a_1,a_2,a_3]).$$

$$f(c[a_1,a_2,a_3]) = f([ca_1,ca_2,ca_3]) = [ca_1,ca_2,-ca_3] = c[a_1,a_2,-a_3] = cf([a_1,a_2,a_3]),$$

we see that f is a linear operator. Similarly, reflection through the xz-plane or the yz-plane is also a linear operator on \mathbb{R}^3

My Inspiration hri. V.G. Pati Saheb Dr. V. S.

Santosh Shiv

Kernel and Image of a Linear Transformation

This section is devoted to two important subspaces associated with a linear transformation $T: V \to W$.

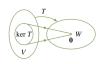
Definition Kernel and Image of a Linear Transformation

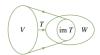
The **kernel** of T (denoted ker T) and the **image** of T (denoted im T or T(V)) are defined by

$$\ker T = \{ \mathbf{v} \text{ in } V \mid T(\mathbf{v}) = \mathbf{0} \}$$
$$\operatorname{im} T = \{ T(\mathbf{v}) \mid \mathbf{v} \text{ in } V \} = T(V)$$

My Inspiration I**hri. V.G. Pat Saheb** Dr. V. S. Sonawne

Dhamone





The kernel of T is often called the **nullspace** of T because it consists of all vectors \mathbf{v} in V satisfying the *condition* that $T(\mathbf{v}) = \mathbf{0}$. The image of T is often called the **range** of T and consists of all vectors \mathbf{w} in W of the form $\mathbf{w} = T(\mathbf{v})$ for some \mathbf{v} in V. These subspaces are depicted in the diagrams.

Example

Let $T_A: \mathbb{R}^n \to \mathbb{R}^m$ be the linear transformation induced by the $m \times n$ matrix A, that is $T_A(\mathbf{x}) = A\mathbf{x}$ for all columns \mathbf{x} in \mathbb{R}^n . Then

$$\ker T_A = \{ \mathbf{x} \mid A\mathbf{x} = \mathbf{0} \} = \text{null } A \quad \text{and}$$
$$\operatorname{im} T_A = \{ A\mathbf{x} \mid \mathbf{x} \text{ in } \mathbb{R}^n \} = \operatorname{im} A$$

My Inspiratio hri. V.G. Pa Saheb Dr. V. S.

Santosh Shiv

One-to-One and Onto Transformations

Definition One-to-one and Onto Linear Transformations

Let $T: V \to W$ be a linear transformation.

- 1. T is said to be **onto** if im T = W.
- 2. *T* is said to be **one-to-one** if $T(\mathbf{v}) = T(\mathbf{v}_1)$ implies $\mathbf{v} = \mathbf{v}_1$.

My Inspiration hri. V.G. Patil Saheb Dr. V. S.

Santosh Shivl Dhamone

Theorem

If $T: V \to W$ is a linear transformation, then T is one-to-one if and only if $\ker T = \{\mathbf{0}\}$.

<u>Proof.</u> If T is one-to-one, let \mathbf{v} be any vector in ker T. Then $T(\mathbf{v}) = \mathbf{0}$, so $T(\mathbf{v}) = T(\mathbf{0})$. Hence $\mathbf{v} = \mathbf{0}$ because T is one-to-one. Hence ker $T = \{\mathbf{0}\}$.

Conversely, assume that $\ker T = \{\mathbf{0}\}$ and $\det T(\mathbf{v}) = T(\mathbf{v}_1)$ with \mathbf{v} and \mathbf{v}_1 in V. Then $T(\mathbf{v} - \mathbf{v}_1) = T(\mathbf{v}) - T(\mathbf{v}_1) = \mathbf{0}$, so $\mathbf{v} - \mathbf{v}_1$ lies in $\ker T = \{\mathbf{0}\}$. This means that $\mathbf{v} - \mathbf{v}_1 = \mathbf{0}$, so $\mathbf{v} = \mathbf{v}_1$, proving that T is one-to-one.

ly Inspiration ori. V.G. Pati Saheb Dr. V. S. Sonawne

Santosh Shivla Dhamone

Example

The identity transformation $1_V: V \to V$ is both one-to-one and onto for any vector space V.

My Inspiratio hri. V.G. Par Saheb Dr. V. S. Sonawne

Santosh Shiv

Example

Consider the linear transformations

$$S: \mathbb{R}^3 \to \mathbb{R}^2$$
 given by $S(x, y, z) = (x + y, x - y)$
 $T: \mathbb{R}^2 \to \mathbb{R}^3$ given by $T(x, y) = (x + y, x - y, x)$

 $T: \mathbb{R}^n \to \mathbb{R}^n$ given by T(x, y) = (x + y, x - y, x)

Show that T is one-to-one but not onto, whereas S is onto but not one-to-one.

<u>Solution.</u> The verification that they are linear is omitted. T is one-to-one because

$$\ker T = \{(x, y) \mid x + y = x - y = x = 0\} = \{(0, 0)\}\$$

However, it is not onto. For example (0, 0, 1) does not lie in im T because if (0, 0, 1) = (x + y, x - y, x) for some x and y, then x + y = 0 = x - y and x = 1, an impossibility. Turning to S, it is not one-to-one by Theorem 7.2.2 because (0, 0, 1) lies in ker S. But every element (s, t) in \mathbb{R}^2 lies in im S because (s, t) = (x + y, x - y) = S(x, y, z) for some x, y, and z (in fact, $x = \frac{1}{3}(s + t)$, $y = \frac{1}{3}(s - t)$, and z = 0). Hence S is onto.

My Inspiration hri. V.G. Pati Saheb Dr. V. S. Sonawne

Santosh Shiv

Theorem

Let A be an $m \times n$ matrix, and let $T_A : \mathbb{R}^n \to \mathbb{R}^m$ be the linear transformation induced by A, that is $T_A(\mathbf{x}) = A\mathbf{x}$ for all columns \mathbf{x} in \mathbb{R}^n .

- 1. T_A is onto if and only if rank A = m.
- 2. T_A is one-to-one if and only if rank A = n.

Proof.

- 1. We have that im T_A is the column space of A , so T_A is onto if and only if the column space of A is \mathbb{R}^m . Because the rank of A is the dimension of the column space, this holds if and only if rank A = m.
- 2. ker $T_A = \{\mathbf{x} \text{ in } \mathbb{R}^n \mid A\mathbf{x} = \mathbf{0}\}$, so (using Theorem) T_A is one-to-one if and only if $A\mathbf{x} = \mathbf{0}$ implies $\mathbf{x} = \mathbf{0}$. This is equivalent to rank A = n by Theorem

My Inspiration hri. V.G. Patil Saheb Dr. V. S.

Santosh Shiv Dhamone

Theorem : Dimension Theorem

Let $T: V \to W$ be any linear transformation and assume that ker T and im T are both finite dimensional. Then V is also finite dimensional and

$$\dim V = \dim (\ker T) + \dim (\operatorname{im} T)$$

In other words, dim V = nullity(T) + rank(T).

My Inspiration hri. V.G. Pati Saheb Dr. V. S.

Santosh Shiv Dhamone

Example

Let A be an $m \times n$ matrix of rank r. Show that the space null A of all solutions of the system $A\mathbf{x} = \mathbf{0}$ of m homogeneous equations in n variables has dimension n - r.

<u>Solution.</u> The space in question is just ker T_A , where $T_A : \mathbb{R}^n \to \mathbb{R}^m$ is defined by $T_A(\mathbf{x}) = A\mathbf{x}$ for all columns \mathbf{x} in \mathbb{R}^n . But dim (im T_A) = rank T_A =

My Inspiration nri. V.G. Patil Saheb Dr. V. S.

Santosh Shivl Dhamone

Example. The image of

$$f(x) = e^x$$

consists of all positive numbers.

My Inspiration hri. V.G. Pat Saheb Dr. V. S.

Santosh Shiv Dhamone

Example. Describe the image of the linear transformation T from \mathbb{R}^2 to \mathbb{R}^2 given by the matrix

$$A = \left[\begin{array}{cc} 1 & 3 \\ 2 & 6 \end{array} \right]$$

Solution

$$T\left[\begin{array}{c} x_1 \\ x_2 \end{array}\right] = A\left[\begin{array}{c} x_1 \\ x_2 \end{array}\right] = \left[\begin{array}{cc} 1 & 3 \\ 2 & 6 \end{array}\right] \left[\begin{array}{c} x_1 \\ x_2 \end{array}\right]$$

My Inspiration hri. V.G. Patil Saheb Dr. V. S. Sonawne

Santosh Shivla Dhamone

$$= x_1 \begin{bmatrix} 1 \\ 2 \end{bmatrix} + x_2 \begin{bmatrix} 3 \\ 6 \end{bmatrix} = x_1 \begin{bmatrix} 1 \\ 2 \end{bmatrix} + 3x_2 \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$
$$= (x_1 + 3x_2) \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$

Example. Describe the image of the linear transformation T from \mathbb{R}^2 to \mathbb{R}^3 given by the matrix

$$A = \left[\begin{array}{cc} 1 & 1 \\ 1 & 2 \\ 1 & 3 \end{array} \right]$$

My Inspiration hri. V.G. Patil Saheb Dr. V. S.

Santosh Shivla Dhamone

Solution

$$T\left[\begin{array}{c} x_1 \\ x_2 \end{array}\right] = \left[\begin{array}{cc} 1 & 1 \\ 1 & 2 \\ 1 & 3 \end{array}\right] \left[\begin{array}{c} x_1 \\ x_2 \end{array}\right] = x_1 \left[\begin{array}{c} 1 \\ 1 \\ 1 \end{array}\right] + x_2 \left[\begin{array}{c} 1 \\ 2 \\ 3 \end{array}\right]$$