

Art's Commerce and Science College, Onde Tal:- Vikramgad, Dist:- Palghar USMT 402: Linear Algebra-II

Practical No-3

My Inspiration Shri. V.G. Patil Saheb Dr. V. S. Sonawne

Inner product and properties,

Projection, Orthogonal complements.

Santosh Shivlal Dhamone

Assistant Professor in Mathematics Art's Commerce and Science College,Onde Tal:- Vikramgad, Dist:- Palghar

santosh2maths@gmail.com

January 28, 2022

Contents

My Inspiration hri. V.G. Patil Saheb Dr. V. S. Sonawne

Santosh Shivl Dhamone

> Inner product and properties, Projection, Orthogonal complements

Vly Inspiratio hri. V.G. Pa Saheb Dr. V. S. Sonawne

Santosh Shiv Dhamone

Definition

A general inner product in a real (complex) vector space $\mathcal V$ is a symmetric (Hermitian) bilinear form $\langle \cdot, \cdot \rangle : \mathcal V \times \mathcal V \to \mathbb R$ ($\mathbb C$), i.e.,

$$\{ \boldsymbol{x}, \boldsymbol{x} \} \in \mathbb{R}_{\geq 0} \text{ with } \langle \boldsymbol{x}, \boldsymbol{x} \rangle = 0 \text{ if and only if } \boldsymbol{x} = \boldsymbol{0}.$$

2
$$\langle \mathbf{x}, \alpha \mathbf{y} \rangle = \alpha \langle \mathbf{x}, \mathbf{y} \rangle$$
 for all scalars α .

$$\langle x, y \rangle = \langle y, x \rangle$$
 (or $\langle x, y \rangle = \overline{\langle y, x \rangle}$ if complex).

My Inspiration hri. V.G. Pat Saheb Dr. V. S. Sonawne

Santosh Shivl Dhamone

As before, any inner product induces a norm via

$$\|\cdot\| = \sqrt{\langle \cdot, \cdot \rangle}.$$

One can show (analogous to the Euclidean case) that $\|\cdot\|$ is a norm.

In particular, we have a general Cauchy–Schwarz–Bunyakovsky inequality

$$|\langle \boldsymbol{x}, \boldsymbol{y} \rangle| \leq \|\boldsymbol{x}\| \|\boldsymbol{y}\|.$$

Vly Inspiration hri. V.G. Pati SahebDr. V. S.
Sonawne

Santosh Shivl Dhamone

Example

- \bullet $\langle x, y \rangle = x^T y$ (or $x^* y$), the standard inner product for \mathbb{R}^n (\mathbb{C}^n).
- ② For nonsingular matrices A we get the A-inner product on \mathbb{R}^n , i.e.,

$$\langle \boldsymbol{x}, \boldsymbol{y} \rangle = \boldsymbol{x}^T \mathsf{A}^T \mathsf{A} \boldsymbol{y}$$

with

$$\|\mathbf{x}\|_{\mathsf{A}} = \sqrt{\langle \mathbf{x}, \mathbf{x} \rangle} = \sqrt{\mathbf{x}^{\mathsf{T}} \mathsf{A}^{\mathsf{T}} \mathsf{A} \mathbf{x}} = \|\mathsf{A} \mathbf{x}\|_{2}.$$

③ If $V = \mathbb{R}^{m \times n}$ (or $\mathbb{C}^{m \times n}$) then we get the standard inner product for matrices, i.e.,

$$\langle A, B \rangle = trace(A^TB)$$
 (or trace(A*B))

My Inspiration hri. V.G. Pati Saheb Dr. V. S. Sonawne

Santosh Shiv

Parallelogram identity

In any inner product space the so-called parallelogram identity holds, i.e.,

$$\|\mathbf{x} + \mathbf{y}\|^2 + \|\mathbf{x} - \mathbf{y}\|^2 = 2(\|\mathbf{x}\|^2 + \|\mathbf{y}\|^2).$$
 (2)

This is true since

$$\begin{aligned} \|\boldsymbol{x} + \boldsymbol{y}\|^2 + \|\boldsymbol{x} - \boldsymbol{y}\|^2 &= \langle \boldsymbol{x} + \boldsymbol{y}, \boldsymbol{x} + \boldsymbol{y} \rangle + \langle \boldsymbol{x} - \boldsymbol{y}, \boldsymbol{x} - \boldsymbol{y} \rangle \\ &= \langle \boldsymbol{x}, \boldsymbol{x} \rangle + \langle \boldsymbol{x}, \boldsymbol{y} \rangle + \langle \boldsymbol{y}, \boldsymbol{x} \rangle + \langle \boldsymbol{y}, \boldsymbol{y} \rangle \\ &+ \langle \boldsymbol{x}, \boldsymbol{x} \rangle - \langle \boldsymbol{x}, \boldsymbol{y} \rangle - \langle \boldsymbol{y}, \boldsymbol{x} \rangle + \langle \boldsymbol{y}, \boldsymbol{y} \rangle \\ &= 2\langle \boldsymbol{x}, \boldsymbol{x} \rangle + 2\langle \boldsymbol{y}, \boldsymbol{y} \rangle = 2\left(\|\boldsymbol{x}\|^2 + \|\boldsymbol{y}\|^2\right). \end{aligned}$$

My Inspiration hri. V.G. Pati Saheb Dr. V. S. Sonawne

Santosh Shiv Dhamone

Orthogonal Complements and Projections

Recall that two vectors $v_1 & v_2$ in \mathbb{R}^n are perpendicular or orthogonal provided that their dot product vanishes. That is, $v_1 \perp v_2$ if and only if $v_1 \cdot v_2 = 0$.

Example

1. The vectors
$$\begin{pmatrix} 1 \\ -3 \\ 4 \end{pmatrix}$$
 & $\begin{pmatrix} 12 \\ 8 \\ 3 \end{pmatrix}$ in \mathbb{R}^3 are orthogonal while $\begin{pmatrix} 1 \\ -3 \\ 4 \end{pmatrix}$ & $\begin{pmatrix} 4 \\ -6 \\ 7 \end{pmatrix}$ are

not.

My Inspiration hri. V.G. Pati Saheb Dr. V. S. Sonawne

Santosh Shiv

We can define an *inner product* on the vector space of all polynomials of degree at most
 3 by setting

$$\langle f(x), g(x) \rangle = \int_0^1 f(x) g(x) dx.$$

(There is nothing special about integrating over [0,1]; This interval was chosen arbitrarily.) Then, for example,

$$\langle 2x^2 + 1, 10x^2 + 11x - 11 \rangle = \int_0^1 (2x^2 + 1) (10x^2 + 11x - 11) dx$$

$$= \int_0^1 (20x^4 + 22x^3 - 12x^2 + 11x - 11) dx$$

$$= \left(4x^5 + \frac{11}{2}x^4 - 4x^3 + \frac{11}{2}x^2 - 11x \right) \Big|_0^1$$

$$= 0$$

My Inspiration hri. V.G. Patil Saheb Dr. V. S. Sonawne

Santosh Shiv Dhamone Hence, relative to the inner product $\langle f(x), g(x) \rangle = \int_0^1 f(x) g(x) dx$ we have that the

two polynomials $2x^2 + 1 & 10x^2 + 11x - 11$ are orthogonal in P_3 .

So, more generally, we say that $v_1 \perp v_2$ in a vector space V with inner product $\langle u, v \rangle$ provided

that
$$\langle u, v \rangle = 0$$
.

My Inspiration hri. V.G. Pati Saheb Dr. V. S. Sonawne

Santosh Shiv Dhamone Suppose V is a vector space with inner product $\langle u, v \rangle$. (Think $V = \mathbb{R}^n$ and $\langle u, v \rangle = dot(u, v)$)

- 1. The subspaces $S_1 \& S_2$ of \mathbb{R}^n are said to be *orthogonal*, denoted $S_1 \perp S_2$, if $\langle v_1, v_2 \rangle = 0$ for all $v_1 \in S_1 \& v_2 \in S_2$.
- 2. Let W be a subspace of V. Then we define W^{\perp} (read "W perp") to be the set of vectors in V given by

$$\mathbf{W}^{\perp} = \{ v \in \mathbf{V} \mid \langle v, w \rangle = 0 \text{ for all } w \in \mathbf{W} \}.$$

The set W^{\perp} is called the *orthogonal complement* of W.

My Inspiration hri. V.G. Pati Saheb Dr. V. S.

Santosh Shiv Dhamone

Examples

1. From the above work, if
$$\mathbf{A} = \begin{pmatrix} 1 & 1 & 3 & 1 \\ 2 & 3 & 1 & 1 \\ 1 & 0 & 8 & 2 \end{pmatrix}$$
, then $\mathbf{R}_{A} \perp \mathbf{N}_{A}$.

2. Let A be any $m \times n$ matrix. Now, the null space N_A of A consists of those vectors x with $A \times x = 0_m$. However, $A \times x = 0_m$ if and only if $r_1 \cdot x = 0$ (t = 1, ..., m) for each row r_1 of the matrix A. Hence, the null space of A is the set of all vectors orthogonal to the rows of A and, hence, the row space of A. (Why?) We conclude that $R_A^+ = N_A$.

The above suggest the following method for finding W^{\perp} given a subspace W of \mathbb{R}^n .

- Find a matrix A having as row vectors a generating set for W.
- Find the null space of A. This null space is W[±].

My Inspiration hri. V.G. Patil Saheb Dr. V. S. Sonawne

Santosh Shiv Dhamone

3. Suppose that
$$S_1 = span \begin{cases} 0\\1\\1\\1\\0\\0 \end{cases}$$
 and $S_2 = span \begin{cases} 0\\-1\\1\\1\\0 \end{cases}$. Then $S_1 & S_2$

are orthogonal subspaces of R5. To verify this observe that

$$\left(\begin{array}{c} \begin{pmatrix} 0 \\ 1 \\ 1 \\ 0 \\ 1 \\ 0 \end{pmatrix} + b \begin{pmatrix} 0 \\ 1 \\ 1 \\ 0 \\ 0 \end{pmatrix} \right) \cdot \left(\begin{array}{c} 0 \\ -1 \\ 1 \\ 1 \\ 0 \end{pmatrix}\right) = ar \begin{pmatrix} 0 \\ 1 \\ 0 \\ 1 \\ 1 \\ 0 \end{pmatrix} \cdot \begin{pmatrix} 0 \\ -1 \\ 1 \\ 1 \\ 0 \end{pmatrix} + br \begin{pmatrix} 0 \\ 1 \\ 1 \\ 1 \\ 0 \end{pmatrix} \cdot \begin{pmatrix} 0 \\ -1 \\ 1 \\ 1 \\ 0 \end{pmatrix} = ar (0) + br (0)$$

My Inspiration hri. V.G. Patil Saheb Dr. V. S. Sonawne

Santosh Shivla Dhamone

Thus,
$$\mathbf{S_1} \perp \mathbf{S_2}$$
. Since

$$\left(\begin{array}{c} a \begin{pmatrix} 0 \\ 1 \\ 0 \\ 1 \\ 0 \end{pmatrix} + b \begin{pmatrix} 0 \\ 1 \\ 1 \\ 0 \\ 0 \end{array}\right) \cdot \begin{pmatrix} -7 \\ -2 \\ 2 \\ 5 \end{pmatrix} = 0$$

and

$$\begin{pmatrix} -7 \\ -2 \\ 2 \\ 2 \\ 5 \end{pmatrix} \notin S_2,$$

My Inspiration Shri. V.G. Pati Saheb Dr. V. S.

Santosh Shivl Dhamone

it follows that
$$\boldsymbol{S}_{1}^{\perp} \neq \boldsymbol{S}_{2}$$
. So, what is the set $\boldsymbol{S}_{1}^{\perp}$? Let $\boldsymbol{B} = \begin{pmatrix} 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 & 0 \end{pmatrix}$.

Then, from part 2 above, $S_1^{\perp} = N_B$. In fact, a basis for $S_1^{\perp} = N_B$ can be shown to be

$$\left\{ \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ -1 \\ 1 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 1 \end{bmatrix} \right\}.$$

Finally, we note that the set
$$\left\{ \begin{array}{c} 0 \\ 1 \\ 0 \\ 1 \\ 1 \\ 0 \end{array} \right\} \cup \left\{ \begin{array}{c} 1 \\ 0 \\ 0 \\ 1 \\ 1 \end{array} \right\} \cup \left\{ \begin{array}{c} 1 \\ 0 \\ 0 \\ 1 \\ 1 \end{array} \right\} \cup \left\{ \begin{array}{c} 0 \\ 0 \\ 0 \\ 1 \end{array} \right\} = \left\{ \begin{array}{c} 0 \\ 0 \\ 0 \\ 1 \end{array} \right\} = \left\{ \begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \end{array} \right\} = \left\{ \begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \end{array} \right\} = \left\{ \begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \end{array} \right\} = \left\{ \begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \end{array} \right\} = \left\{ \begin{array}{c} 0 \\ 0 \\ 0 \end{array} \right\} = \left\{ \begin{array}{c} 0 \\ 0 \\ 0 \end{array} \right\} = \left\{ \begin{array}{c} 0 \\ 0 \\ 0 \end{array} \right\} = \left\{ \begin{array}{c} 0 \\ 0 \\ 0 \end{array} \right\} = \left\{ \begin{array}{c} 0 \\ 0 \\ 0 \end{array} \right\} = \left\{ \begin{array}{c} 0 \\ 0 \\ 0 \end{array} \right\} = \left\{ \begin{array}{c} 0 \\ 0 \\ 0 \end{array} \right\} = \left\{ \begin{array}{c} 0 \\ 0 \\ 0 \end{array} \right\} = \left\{ \begin{array}{c} 0 \\ 0 \\ 0 \end{array} \right\} = \left\{ \begin{array}{c} 0 \\ 0 \\ 0 \end{array} \right\} = \left\{ \begin{array}{c} 0 \\ 0 \end{array} \right\} = \left\{ \begin{array}{c} 0 \\ 0 \\ 0 \end{array} \right\} = \left\{ \begin{array}{c} 0 \\ 0 \end{array} \right\} = \left\{ \left\{ \begin{array}{c} 0 \\ 0 \end{array} \right\} = \left\{ \left\{ \begin{array}{c} 0 \\ 0 \end{array} \right\} = \left\{ \left\{ \begin{array}{c} 0 \\ 0 \end{array} \right\} = \left\{ \left\{ \begin{array}{c} 0 \\ 0 \end{array} \right\} = \left\{ \left\{ \begin{array}{c} 0 \\ 0 \end{array} \right\} = \left\{ \left\{ \begin{array}{c} 0 \\ 0 \end{array} \right\} = \left\{ \left\{ \begin{array}{c} 0 \\ 0$$

for \mathbb{R}^5 . In particular, every element of \mathbb{R}^5 can be written as the sum of a vector in S_1 and a vector in S_1^{\perp} .

My Inspiration hri. V.G. Patil Saheb Dr. V. S.

Santosh Shivle Dhamone

4. Let W be the subspace of P_3 (= the vector space of all polynomials of degree at most 3) with basis $\{1, x^3\}$. We take as our inner product on P_3 the function

$$\langle f(x), g(x) \rangle = \int_0^1 f(x) g(x) dx.$$

Find as basis for W^{\perp} .

Solution

Let
$$p(x) = ax^3 + bx^2 + cx + d \in W^{\perp}$$
. Then $\langle p(x), g(x) \rangle = \int_0^1 p(x) g(x) dx = 0$

My Inspiration hri. V.G. Patil Saheb Dr. V. S. Sonawne

Santosh Shiv Dhamone for all $g(x) \in W$. Hence, in particular,

$$\langle p(x), 1 \rangle = \int_0^1 (ax^3 + bx^2 + cx + d) dx = \frac{a}{4} + \frac{b}{3} + \frac{c}{2} + d = 0$$

and

$$\langle p(x), x^3 \rangle = \int_0^1 (ax^6 + bx^5 + cx^4 + dx^3) dx = \frac{a}{7} + \frac{b}{6} + \frac{c}{5} + \frac{d}{4} = 0.$$

Solving the linear system

$$\frac{a}{4}+\frac{b}{3}+\frac{c}{2}+d=0$$

$$\frac{a}{7} + \frac{b}{6} + \frac{c}{5} + \frac{d}{4} = 0$$

My Inspiration hri. V.G. Pati Saheb Dr. V. S.

Santosh Shivle Dhamone

we find that we have pivot variables of
$$a = \frac{14}{5}c + 14d$$
 and $b = -\frac{18}{5}c - \frac{27}{2}d$ with

free variables of c and d. It follows that

$$p(x) = c \left(\frac{14}{5}x^3 - \frac{18}{5}x^2 + x \right) + d \left(14x^3 - \frac{27}{2}x^2 + 1 \right)$$

for some $c, d \in \mathbb{R}$. Hence, the polynomials

$$\frac{14}{5}x^3 - \frac{18}{5}x^2 + x$$
 & $14x^3 - \frac{27}{2}x^2 + 1$

span W^{\perp} . Since these two polynomials are not multiples of each other, they are linearly independent and so they form a basis for W^{\perp} .