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EIGEN VALUES AND EIGEN VECTORS OF A REAL MATRIX:

Working rule to find eigen values and eigen vectors:

1.

Find the characteristic equation |4 — AI| = 0
Solve the characteristic equation to get characteristic roots. They are called eigen values

To find the eigen vectors, solve [4 — AI]X = 0 for different values of 1

Corresponding to n distinct eigen values, we get n independent eigen vectors
If 2 or more eigen values are equal, it may or may not be possible to get linearly

independent eigen vectors corresponding to the repeated eigen values
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If X; is a solution for an eigen value 1;, then cX; is also a solution, where c is an arbitrary
constant. Thus, the eigen vector corresponding to an eigen value is not unique but may
be any one of the vectors cX;

4. Algebraic multiplicity of an eigen value 1 is the order of the eigen value as a root of the
characteristic polynomial (i.e., if A is a double root, then algebraic multiplicity is 2)

5. Geometric multiplicity of A is the number of linearly independent eigen vectors

corresponding to 4
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Non-symmetric matrix:

If a square matrix A is non-symmetric, then A # AT

Note:

1. In a non-symmetric matrix, if the eigen values are non-repeated then we get a linearly
independent set of eigen vectors

2. In a non-symmetric matrix, if the eigen values are repeated, then it may or may not be
possible to get linearly independent eigen vectors.
If we form a linearly independent set of eigen vectors, then diagonalization is possible
through similarity transformation
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Symmetric matrix:
If a square matrix A is symmetric, then A = AT

Note:

1. In a symmetric matrix, if the eigen values are non-repeated, then we get a linearly
independent and pair wise orthogonal set of eigen vectors

2. In a symmetric matrix, if the eigen values are repeated, then it may or may not be
possible to get linearly independent and pair wise orthogonal set of eigen vectors
If we form a linearly independent and pair wise orthogonal set of eigen vectors, then
diagonalization is possible through orthogonal transformation
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Problems:

1. Find the eigen values and eigen vectors of the matrix (; _11)
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1

Solution: Let A = (3

_11) which is a non-symmetric matrix

To find the characteristic equation:

The characteristic equation of A is 42 — §;1 + S, = 0 where

S; = sumofthemaindiagonalelements =1—-1=0,

S, = DeterminantofA = |A| =1(-1)-1(3)=-4

Therefore, the characteristic equationis 2> —4=0ie., 2> =4o0r1= 42
Therefore, the eigen values are 2, -2

A is a non-symmetric matrix with non- repeated eigen values



Practical No-6: Eigenvalues, Eigenvectors

To find the eigen vectors:

[A-2X=0
(G 2)-2G DEI=GI=1G 2)-G k=L

[3h LI =
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Caset:IfA=—2, [1 - §—2)

e [3 1l = (o

ie,3x,+x,=0

o 2)] (5] = [0]tFrom (1

3x1+x,=0

i.e., we get only one equation 3x; +x, =0=3x; = —x, = xT’ = f—;

Therefore X; = [_13]
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Case 2:1f1=2, [1 _3(2) i 1 (2)] (] = (o] tFrom (1)1
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e [5 SlLI= 0
ie,—x+x=0=2x—-x,=0
3%, =3x,=0=2x; —x, =0
i.e., we get only one equation x; —x, =0
X _ X

:}x1=x2:>T= 1

Hence, X, = [ﬂ
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2 21
2. Find the eigen values and eigen vectors of [1 3 1]
12 2
2 21
Solution: LetA=|1 3 1| which is a non-symmetric matrix
12 2

To find the characteristic equation:
Its characteristic equation can be written as A3 — S;42 + S,4 — S; = 0 where

S, = sumofthemaindiagonalelements =2+3+2=7,

2

e e

S, = Sumoftheminorsofthemaindiagonalelements = B §| + |
11,

S3 = DeterminantofA = |A| = 2(4)-2(1)+1(-1)=5
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Therefore, the characteristic equation of Ais 23> — 712 + 111 - 5= 0
1 1 -7 11 -5

0 1 -6 5

1 -6 5 0

A-1DA?-61+5)=0=>1=1,

A_61,/(—6)2—4(1)(5)_61@_614_6+4 6-4_.,
- 2D =2 "~z "2z 7Y

2 2 2
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Therefore, the eigen values are 1, 1, and 5
A is a non-symmetric matrix with repeated eigen values

To find the eigen vectors:

[A—AX=0

2—-1 2 1 X1 0
1 3—-1 1 X2 = |0
1 2 —Allxs 0

2

2-5 2 1 X1 0
Case1:lf1=5,[ 1 3-5 1 ”xz]=[0
1 2 2 —511x3 0.

-3 2 171" 0
ie., [ 1 -2 1 ] [Xz] = [O]
1 2 -=3lx 0
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= —3x; + 2%, + x3 = 0 - (1)

Xy + 2%, — 3x3 = 0 - 3)

Considering equations (1) and (2) and using method of cross-multiplication, we get,

X1X2X3

Therefore, X, =

1
1
1
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2—-1 2 1 X1 0
Case 2: If/l:l,[ 1 3-1 1 ”xz]z H
1 2 2—-111x3 0
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1 2 1™ 0
ie, [1 2 1] [’52] = [0]
1 2 1lxs 0.

Sx 426 +x=0
X2 +x3=0
X1+ 2% +x3=0
All the three equations are one and the same. Therefore, x; + 2x; + x3 = 0

Putx; =0 = 2x, + x3 = 0= 2x, = —x3.Takingxs = 2,x, = -1

0
-1
2

Putx, =0 = x; +x3 = 0 = x3 = —x;. Takingx; = 1,x3 = —1

Therefore, X, =

1
Therefore, X; = [ 0 ]
~1
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2 -2 2
3. Find the eigen values and eigen vectors of [1 1 1 ]
1 3 -1
2 -2 2
Solution: LetA= [1 1 1 ] which is a non-symmetric matrix
1 3 -1

To find the characteristic equation:
Its characteristic equation can be written as 2% — S;4% + S,A — S5 = 0 where
S, = sumofthemaindiagonalelements =2+1—-1=2,
_ . s _1 1 2 2 2 =2 _
S, = Sumoftheminorsofthemaindiagonalelements = |3 _1| + |1 _1| + |1 1 | =
—4—44+4= -4,
S; = DeterminantofA = |A| = 2(-4)+2(-2)+2(2)=-8—-4+4=-8

Therefore, the characteristic equation of Ais A3 — 242 — 44+ 8 =0
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Therefore, the characteristic equation of Ais A*> — 24> —41+8 =0

2 1 -2 -4 8

A=W -4 =0>1=2  1=2-2
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A-2)A-4)=0=>21=2,
Therefore, the eigen values are 2, 2, and -2
A is a non-symmetric matrix with repeated eigen values

To find the eigen vectors:

[A-AlX=0

2—-1 =2 2 X1 0
1 3 —1-2llx3 0

2—(-2) -2 2 X1 0
Case 1:If 1 = -2, 1 1-(-2) 1 [xz] = [0]
1 3 -1-(=-2)|1l*3 0
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4 -2 21*% 0
i3 ][] [
1 3 1llxs 0.

= 4x; — 2X3 + 2x3 = 0 - 1)

X1 +3%,+x3=0 -

X1 + 3%z + X3 = 0 =meeemmeeeen (3) . Equations (2) and (3) are one and the same.
Considering equations (1) and (2) and using method of cross-multiplication, we get,

X1X2X3

X1
-4 -1 7 41 -7

X2 _X3_X%1_ X2 _ X3
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2-2 2 2 Xy 0
Case2:1fA=2, 1 2 1 X2| = |0
1 3 —1-2]1xs 0.

0 -2 2% 0
’1 - ]H - H
1 3 -=3llxs 0.

= 0xy — 25 + 23 = Qoo (1)
Xy = % + Xy = O — @)
X1 +3% =31 = (3)

Considering equations (1) and (2) and using method of cross-multiplication, we get,

X1X2X3

0
Therefore, X, = H
1

We get one eigen vector corresponding to the repeated root 4, = 45 = 2
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11
4. Find the eigen values and eigen vectors of [1 5 1]
311

Solution: LetA=

113
[1 5 1] which is a symmetric matrix

311

To find the characteristic equation:

Its characteristic equation can be written as 4> — $;4% + S,4 — S5 = 0 where
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S, = sumofthemaindiagonalelements =1+5+1=7,
S, = Sumoftheminorsofthemaindiagonalelements = |i i + |§ il + H ; =4—
8+4=0,

S; = DeterminantofA = |A| = 1(4)-1(-2)+3(-14) = -4 + 2-42 = - 36

Therefore, the characteristic equation of A is 43> — 742 + 01— 36 = 0

-2 1 -7 0 36

(A= (-2)A2—91+18)=0=> 1= -2,

12 9E/COT—aD(8) _9+VBT-72_9+3 _9+39-3

2(1) 2 2 2

Therefore, the eigen values are -2, 3, and 6
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( 2)
Case1:1f 1 = — 5—
3.1 3% 0
[1 7 1]” H
3 1 3llxs 0.
= 3x; 4+ x5 + 3x3 = 0 e (1)
+7%,+x3=0 (2)
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Considering equations (1) and (2) and using method of cross-multiplication, we get,

X1 X2 X3

X1 X2 _X3 X1 _Xp X3 X1 _ X2 X3
S—=—==—-s5—="== =
-20 0 20 -4 O 4 -1 0 1

-1
Therefore, X; = [ 0 ]
1
1-3 1 3 X1 0
Case2:1f2=3,| 1 5-3 1 X2 = |0
3 1 1-311x3 0.

-2 1 371" 0
ie, |1 2 1|[*]|=]0
3 1 -2lixs 0.
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= —2x; + X + 3x3 = 0 ===

X1 +2x; +x3=0-

3x; 4 X — 2x3 = 0 =mmmeemeen 3)
Considering equations (1) and (2) and using method of cross-multiplication, we get,

X X, X3

Xy Xy X3 X1 X3 X3 X X X
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1-6 1 3
Case3:lf/1=6,[ 1 5-6 1
3 1 1-6

-
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-5 1 3% 0
w11 ]l [o
3 1 -5llxs 0.

= —5x; + X, + 3x3 = 0 =e-memme )
X1 = X + X3 = 0 mmeeeemeeneeen )
3x; + x5 — 5x3 = 0 mememmeeeen (3)

Considering equations (1) and (2) and using method of cross-multiplication, we get,

X1 XXz

Therefore, X; =

1
2]
1
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5. Find the eigen values and eigen vectors of the matrix

011
10 1]. Determine the
110

algebraic and geometric multiplicity

01 1
Solution: Let A =I1 0 1] which is a symmetric matrix
110

To find the characteristic equation:

Its characteristic equation can be written as A3 — ;1% + S,4 — S5 = 0 where

S, = sum of the main diagonal elements =0+0+0=0,

S, = Sum of the minors of the main diagonal elements = |(1] él + |(1) (1) + (1) (1) =

“1-1-1= -3,
S; = Determinant of A= |A|=0-1(-1)+1(1)=0+1+1=2

Therefore, the characteristic equation of Ais 2> — 012 —=31—2=0
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A-D))RP-21-2)=0=>21=-1,
_1+J/ED2-4M(2) 1+VI+8 143 1+31-3
== =2

2(1) 2~z 7z X!

Therefore, the eigen values are 2, -1, and -1

A'is a symmetric matrix with repeated eigen values. The algebraic multiplicity of 1 = —1 is 2
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To find the eigen vectors:

[A= 211X =0

0-1 1 1 Xy 0
[ R ”x]:[ol
1 1 0—allxs 0.

0-2 1 1 Xy 0
Case1:lf/1=2,l 1 0-2 1 szl= [0]
1 1 0—2]1xs. 0.

-2 1 1] 0
ie,[1 -2 1[[*]|=|0

1 1 =20l o
= 2% + X + X3 = 0 - (1)
P Y| pp— —(2)
PO TRy IOy pR— (3)

Considering equations (1) and (2) and using method of cross-multiplication, we get,

X1 X2 X3
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Therefore, X, =

1
ll
1

0-(-1) 1
Case 2: IfA= -1, 1 0—(-1) 1 =
1 0-(-1)

11 1™ 0
ie, 1 1 1][x|= |0

11 1lxs 0.
=X+ Xp Xy = 0 memeen )
XX tx = -~ (2)

X+ X X3 = - (3). All the three equations are one and the same.

Therefore, x; +x; +x;=0.Putx; =0 =X, +x3=0 2 x; = —x, 2= 2

0
1
-1

Therefore, X, =
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Since the given matrix is symmetric and the eigen values are repeated, let X; =

1
ml. X is
n

orthogonal to X, and X, .

!
n1 1][ml=0=l+m+n:u .......... )
n

!
o1 71]H=n =00+ m—n =0 (2)
n

Solving (1) and (2) by method of cross-multiplication, we get,

| m n

XX

L _m_n
=7 =71 Therefore, X3 =

-2
1]
1



