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General Solution of Langrange’s Equation

Langrange’s Auxiliary Equation

P(x, y, z) p + Q(x,y,z) q = R(x,y,z)

where P , Q and R are continuously differentiable
functions on the domain D ⊆ R3 is ϕ(u, v) = 0 where ϕ
is an arbitrary function and

u(x , y , z) = c1 and v(x , y , z) = c2

are two independent solutions of

dx
P = dy

Q = dz
R

This equation is known as Langrange’s Auxiliary Equation
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General Solution of Langrange’s Equation

Problem 1:

Solve the PDE of y2z
x

p + xz q = y 2

Solution

It is of the form
P p + Q q = R

Langrange’s Auxiliary Equation’s are
dx

P
=

dy

Q
=

dz

R

dx
y2z
x

=
dy

xz
=

dz

y2 (1)
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General Solution of Langrange’s Equation

Solution of Problem 1 Continue...

Taking the first two fractions from (1)
dx
y2z
x

=
dy

xz

x2dx = y 2dy
Integrating we get, x3 = y 3 + c1

x3 − y 3 = c1 (2)
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General Solution of Langrange’s Equation

Solution of Problem 1 Continue...

Taking the first and last fractions from (1)
dx
y2z
x

=
dz

y 2

xdx = zdz
Integrating we get, x2 = z2 + c2

x2 − z2 = c2 (3)



My Inspiration
Shri. V.G. Patil

Saheb

Subject Teacher
Santosh Dhamone

General Solution of Langrange’s Equation

Solution of Problem 1 Continue...

From equations (2) and (3), the required general solution
is

Φ(x3 − y 3 , x2 − z2)

where ϕ is arbitrary function.
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General Solution of Langrange’s Equation

Problem 2:

Solve the PDE of p + 3 q = 5z + tan(y − 3x)

Solution

It is of the form
P p + Q q = R

Langrange’s Auxiliary Equation’s are
dx

P
=

dy

Q
=

dz

R

dx

1
=

dy

3
=

dz

5z + tan(y − 3x)
(4)
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General Solution of Langrange’s Equation

Solution of Problem 2 Continue...

Taking the first two fractions from (4)
dx

1
=

dy

3
3dx = ydy

Integrating we get, 3x = y + c1

3x - y = c1 (5)
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General Solution of Langrange’s Equation

Solution of Problem 2 Continue...

Taking the first and last fractions from (4)
dx

1
=

dz

5z + tan(y − 3x)

dx =
dz

5z + tan(c1)
.....From equation (5)

Integrating we get, x =
ln (5z + tan c1)

5

5x − ln (5z + tan c1) = c2 (6)
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General Solution of Langrange’s Equation

Solution of Problem 2 Continue...

From equations (5) and (6), the required general solution
is

Φ(3x - y , 5x − ln [5z + tan(3x − y)])

where ϕ is arbitary function.
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General Solution of Langrange’s Equation

Problem 3:

Solve the PDE of yz
b − c

a
p + zx

c − a

b
q =

a − b

c
xy

Solution

It is of the form
P p + Q q = R

Langrange’s Auxiliary Equation’s are
dx

P
=

dy

Q
=

dz

R

dx

yz(b − c)

a

=
dy

xz(c − a)

b

=
dz

xy(a− b)

c

(7)
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General Solution of Langrange’s Equation

Solution of Problem 3 Continue...

Choosing x , y , z as multipliers, each fraction equals

=
axdx

xyz(b − c)
+

bydy

xyz(c − a)
+

czdz

xy(a− b)

=
axdx + bydy + czdz

xyz(b − c + c − a+ a− b)
=⇒ axdx+bydy+czdz=0

Integrating we get,
ax2

2
+

by2

2
+

cz2

2
= c1

ax2 + by2 + cz2 = c1 (8)
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General Solution of Langrange’s Equation

Solution of Problem 3 Continue...

Choosing ax , by , cz as multipliers, each fraction equals

e =
a2xdx

xyz(b − c)
+

b2ydy

xyz(c − a)
+

c2zdz

xy(a− b)

=
a2xdx + b2ydy + c2zdz

xyz(ab − ac + bc − ba+ ca− cb)
=⇒ a2xdx + b2ydy + c2zdz = 0

Integrating we get,
a2x2

2
+

b2y2

2
+

c2z2

2
= c2
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General Solution of Langrange’s Equation

Solution of Problem 3 Continue...

a2x2 + b2y 2 + c2z2 = c2 (9)

From equations (8) and (9), the required general solution
is

Φ(ax2 + by 2 + cz2 , a2x2 + b2y 2 + c2z2)

where ϕ is arbitary function.
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General Solution of Langrange’s Equation

Problem 4:

Solve the PDE of (y + z) p + (z + x) q = x + y

Solution

It is of the form
P p + Q q = R

Langrange’s Auxiliary Equation’s are
dx

P
=

dy

Q
=

dz

R

dx

y + z
=

dy

x + z
=

dz

x + y
(10)
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General Solution of Langrange’s Equation

Solution of Problem 4 Continue...

Choosing 1,−1, 0 as multipliers, each fraction equals

=
dx − dy

y − x
= −d(x − y)

x − y
Choosing 0, 1,−1 as multipliers, each fraction equals

=
dy − dz

z − y
= −d(y − z)

y − z
Choosing 1, 1, 1 as multipliers, each fraction equals

=
dx + dy + dz

y + z + z + x + x + y

=
dx + dy + dz

2(x + y + z)
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General Solution of Langrange’s Equation

Solution of Problem 4 Continue...

Taking above three ratios,

−d(x − y)

x − y
=−d(y − z)

y − z
=
dx + dy + dz

2(x + y + z)
taking the first two fraction

−d(x − y)

x − y
=−d(y − z)

y − z
Integrating we get,

ln x − y = ln y − z + ln c1

x − y

y − z
= c1 (11)
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General Solution of Langrange’s Equation

Solution of Problem 4 Continue...

Taking First and Third ratios,

−d(x − y)

x − y
=
dx + dy + dz

2(x + y + z)
Integrating we get,

−2 ln x − y = ln (x + y + z) + ln c2
ln (x − y)2 + ln (x + y + z) = − ln c2

ln (x − y)2(x + y + z) = ln c2
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General Solution of Langrange’s Equation

Solution of Problem 4 Continue...

(x+y+z)(x-y)2 = c2 (12)

From equations (11) and (12), the required general
solution is

Φ(
x − y

y − z
, (x + y + z)(x − y)2)

where ϕ is arbitary function.
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Problem 5:

Solve the PDE of (x + 2z) p + (4xz − y) q = 2x2 + y

Solution

It is of the form
P p + Q q = R

Langrange’s Auxiliary Equation’s are
dx

P
=

dy

Q
=

dz

R

dx

(x + 2z)
=

dy

(4xz − y)
=

dz

(2x2 + y)
(13)
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General Solution of Langrange’s Equation

Solution of Problem 5 Continue...

Choosing −2x , 1, 1 as multipliers, each fraction equals

=
−2xdx + dy + dz

−2x2 − 4xz + 4xz − y + 2x2 + y
∴ -2xdx+dy+dz=0
Integrating we get,

∴
−2x2

2
+ y + z = c1

-x2 + y + z = c1 (14)
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General Solution of Langrange’s Equation

Solution of Problem 5 Continue...

Choosing y , x ,−2z as multipliers, each fraction equals

=
ydx + xdy − 2zdz

xy + 2yz + 4x2z − xy − 4x2z − 2yz
∴ ydx+xdy-2zdz=0
∴ d(xy)-2zdz=0

Integrating we get, xy +
−2z2

2
= c2

xy-z2 = c2 (15)

From equations (14) and (15), the required general solution is

Φ(-x2 + y + z , xy − z2)

where ϕ is arbitary function.
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General Solution of Langrange’s Equation

Problem 6:

Solve the PDE of (y − zx) p + (x + yz) q = x2 + y 2

Solution

It is of the form
P p + Q q = R

Langrange’s Auxiliary Equation’s are
dx

P
=

dy

Q
=

dz

R

dx

(y − zx)
=

dy

(x + yz)
=

dz

(x2 + y2)
(16)
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General Solution of Langrange’s Equation

Solution of Problem 6 Continue...

Choosing y , x ,−1 as multipliers, each fraction equals

=
ydx + xdy − dz

y 2 − xyz + x2 + xyz − x2 − y 2

∴ ydx+xdy-dz=0∴ d(xy)-dz=0Integratingweget,
∴ xy - z= c1

xy - z= c1 (17)
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General Solution of Langrange’s Equation

Solution of Problem 6 Continue...

Choosing x ,−y , z as multipliers, each fraction equals

=
xdx − ydy + zdz

xy − x2z − xy − y 2z + x2z + y 2z
∴ xdx - ydy + zdz=0

Integrating we get,
x2

2
− y 2

2
+

z2

2
= c2

x2 − y 2 + z2 = c2 (18)

From equations (17) and (18), the required general solution is

Φ(xy - z,x2 − y 2 + z2)

where ϕ is arbitary function.
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General Solution of Langrange’s Equation

Problem 7:

Solve the PDE of x2 ∂z
∂x + y 2 ∂z

∂y = (x + y)z

Solution

Let ∂z
∂x

= p and ∂z
∂y

= q
It is of the form
P p + Q q = R

Langrange’s Auxiliary Equation’s are
dx

P
=

dy

Q
=

dz

R

dx

x2
=

dy

y2
=

dz

(x + y)z
(19)
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General Solution of Langrange’s Equation

Solution of Problem 7 Continue...

Consider first two ratio of equation (19)
dx

x2
=

dy

y 2

∴ x−2dx = y−2dy
Integrating we get,

∴
x−1

−1
=

y−1

−1
+ c1

∴
1

y
− 1

x
= c1

x − y

xy
= c1 (20)
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General Solution of Langrange’s Equation

Solution of Problem 7 Continue...

Choosing
1

x
,
1

y
,−1

z
as multipliers, each fraction equals

=

1

x
dx +

1

y
dy − 1

z
dz

x + y − x − y
=⇒ 1

x
dx +

1

y
dy − 1

z
dz = 0

Integrating we get,

∴ ln x + ln y − ln z = ln c2 =⇒ ∴ ln
xy

z
= ln c2

xy

z
= c2 (21)

From equations (20) and (21), the required general solution is

Φ(
x − y

xy
,
xy

z
)

where ϕ is arbitary function.
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General Solution of Langrange’s Equation

Problem 8:

Find the general solution / complete integral of PDE
z(x p − y q) = y 2 − x2

Solution

Given xz p − yz q = y 2 − x2

It is of the form P p + Q q = R
Langrange’s Auxiliary Equation’s are

dx

P
=

dy

Q
=

dz

R

dx

xz
=

dy

−yz
=

dz

y2 − x2
(22)
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General Solution of Langrange’s Equation

Solution of Problem 8 Continue...

Consider first two ratio of equation (22)
dx

xz
=

dy

−yz

∴
dx

x
=

dy

−y
Integrating we get,

∴ ln x = − ln y + ln c1
∴ ln x + ln y = ln c1
∴ ln xy = ln c1

Taking antilog, we get

xy= c1 (23)



My Inspiration
Shri. V.G. Patil

Saheb

Subject Teacher
Santosh Dhamone

General Solution of Langrange’s Equation

Solution of Problem 8 Continue...

Choosing (x + y), (x + y), z as multipliers, fraction equals

=
(x + y)dx + (x + y)dy + zdz

x2z + xyz − xyz − y 2z + y 2z − x2z
xdx + ydy + (ydy + xdy) + zdz = 0

Integrating we get,
x2

2
+

y 2

2
+ xy +

z2

2
= c2

x2 + y 2 + 2xy + z2 = c2 (24)

From equations (23) and (24), the required general solution is

Φ(xy,x2 + y 2 + 2xy + z2)

where ϕ is arbitary function.
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General Solution of Langrange’s Equation

Problem 9:

Find the general solution / complete integral of PDE
y 2 p − xy q = x(z − 2y)

Solution

Given y 2 p − xy q = x(z − 2y)
It is of the form P p + Q q = R
Langrange’s Auxiliary Equation’s are

dx

P
=

dy

Q
=

dz

R

dx

y2
=

dy

−xy
=

dz

x(z − 2y)
(25)
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General Solution of Langrange’s Equation

Solution of Problem 9 Continue...

Consider first two ratio of equation (25)
dx

y 2
=

dy

−xy

∴
dx

y
=

dy

−x
∴ xdx = -ydy Integrating we get,

∴
x2

2
= −y 2

2
+ c1

∴
x2

2
+

y 2

2
= c1

Taking antilog, we get

x2 + y 2 = c1 (26)
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General Solution of Langrange’s Equation

Solution of Problem 9 Continue...

Choosing 2x , z , y as multipliers, fraction equals

=
2xdx + zdy + ydz

2xy 2 − xyz + xyz − 2xy 2

∴ 2xdx + zdy + ydz = 0 =⇒ 2xdx + d(yz) = 0
Integrating we get,

2
x2

2
+ yz = c2

x2 + 2yz = c2 (27)

From equations (26) and (27), the required general solution is

Φ( x2 + y 2 , x2 + 2yz)

where ϕ is arbitary function.
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General Solution of Langrange’s Equation

Problem 10:

Solve the PDE of ∂z
∂x +

∂z
∂y = x + y + z

Solution

Given p + q = x + y + z
It is of the form P p + Q q = R
Langrange’s Auxiliary Equation’s are

dx

P
=

dy

Q
=

dz

R

dx

1
=

dy

1
=

dz

x + y + z
(28)
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General Solution of Langrange’s Equation

Solution of Problem 10 Continue...

Consider first two ratio of equation (28)
dx

1
=

dy

1
∴ dx = dy

Integrating we get,
∴ x= y + c1

x - y = c1 (29)
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General Solution of Langrange’s Equation

Solution of Problem 10 Continue...

Choosing 1, 1, 1 as multipliers, fraction equals
dx

1
=

dx + dy + dz

2 + x + y + z
Integrating we get, x = ln (2 + x + y + z) + ln c2

x = ln [c2(2 + x + y + z)] =⇒ ex = c2(2 + x + y + z)

ex

(2 + x + y + z)
= c2 (30)

From equations (28) and (29), the required general solution is

Φ( x - y ,
ex

(2 + x + y + z)
)

where ϕ is arbitary function.


