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PDE: Unit | : Partial Differential Equations

® Parametrically Defined Curve in R*:
Parametrically Defined Curve in R? is the plane curve € given by a
function
f:D—R2 f(t) = (x(t),y(t)) where D C .

Usually, we express this by simply saying that C' is the

(parametrically defined) curve given by (z(t),y(t)),t € D. For

example, the rectangular hyperbola is the curve (¢. 1).t € R\ {0}.
® Parametrically Defined Curve in B¥:

A parametrically defined curve C in B3 is given by

(.r[f),y(t), z(t)),f € D where D C R.

® Parametrically Defined Surface S in R? is given by a function
f:D—R3 flu.v) = (;{.‘(T.E-, v), yluw,v), z(u, :)) where x,y, = are
real valued functions on D, that is, =,y z :— [,



PDE: Unit | : Chain Rules

We will need the following Chain Rules.
® If z=g(v) and v = f(x,y) and then =z is a function of (z.y), and

0: _d:dv . 0:_dsw

ox  dvdr o Ay dvdy
e If - = f(x.y) and x = x(t),y = y(t), then z is a function of ¢, and
e _ Dede  Q2dy
dt — Oz dt Ay dt
® If 2 = f(u,v) and if u = u(z,y), v =v(z,y), then z is a function of
(x,y), and

dz _ dzdu Dz ov N Az  dzou Oz dv

9z  Oudz ' Ovor

dy  dudy  Ovdy



PDE: Unit | : Useful Notations

Lemm

If z is a function of (&, y) then |

If u=ulz,y) and v = vz, y) then

dr  dy
= Jacobian matrix of w and v w.r.t. = and y.
duv  dv
dr  dy
du  Ou
dr  dy
® det = Jacobian of u and v w.rt. = and y.
v v
dr dy
Al iy dr Dy
® Notation M = det,
C}U-‘s y } v v

or  y



PDE: Unit | : Definition of PDE, Order

and Degree

An equation containing one or more partial derivatives of an
unknown function of two or more independent variables is known as
a partial differential equation.

= T ® General format f(x.y.2,p.q) =0
0z dz
® For example — + — =z +ay
dr Oy
That is,
prgq=z+xy

e QOrder of a partial differential equation is defined as the order of the
highest order partial derivative occurring in the partial differential
equation.

® Degree of a partial differential equation is defined as the power of
the highest order partial derivative occurring in the partial
differential equation after the equation has been made free from
radicals and fractions so far as derivatives are concerned.



Unit | ; Classification of First Order PDE

A first order partial differential equation f(x.y,z,p.q) = 0 is known as

Linear egn

Semi-linear

Quasi-linear

linear in p. g

linear in p. g

linear in p, q

ya? p+xy? q

=r+y-+ .'I:Qyza

yr? p+ay? g

=z +y+ a?y?2?

and z
Plx,y)p+ Q@ y)a | Pla,y)p+Qz,y)q | Plz,y,2)p+ Qa.y, 2)q
= R(z.y)z+S(z,y) | = Rl(z.y.2) — R(z.y.2)
For example For example For example

yrlz p+ry’z q

=r+y




Unit | : Obtaining a PDE

TYPE 1 The elimination of arbitrary function ¢ from the equation
¢(u,v) =0, where u and v are functions of x,y and z (z is assumed to
Subject Teacher be a function of x and y), gives the partial differential equation

(u, v) I v) a (ﬂu,_;
(. z) ® P+ 3(z,2) *q = Hza):

Obtain a pde by eliminating the arbitrary function ¢ from

et y+ 222 4+9° —22)=0
Let u(z,y,2) =x+y +z,v(x,y,2) =22 + 9% — 22
du.v) d{u,v) d(u,v)
(y, z) 9z, x) Aw.y)
1 1 1 1 1 1
det (Zy R 23) det (_ 92, 23:) det ( 90 2;{;)
3y +2) 2Nz t2) 2y — =)

The required pde is (y+2)p—(z+2)g=2z—y



d(z,v)
Nz, y

TYPE 2: Let v = v(x.y) and =z = f(v) then =0 is a first order

P q

g 'I"?J

pde for z. That is, the pde is

Example: Eliminate arbitrary function f from z = f(a* — »*) and obtain
the corresponding pde.

Let v = 2% — 3%, So v, = 2z,v, = —2y.

Az, v)

Aa.y)

The partial differential is given by
Thatis, v, p—v, g=0

Substituting we get, (—2y) p— (22) g = 0. The p.d.e. is
yp+zqg=0.



Unit | : Obtaining a PDE

Using theorem 0.2 we can prove following results.

Equation pde
z=f(z* —¢?) yp+rp=0
z= flx? + 42 yp—aq=0

Yy ur ]

l+np x+2zp

lo +my +nz = f(z2 +y? +22)
m o+ 1g Y+ zq

z = et fax — by) bp+aqg=2ab =

z -—;c'“f(%) Tp+yq=nz




Unit | : Obtaining a PDE

TYPE 3: Obtain a pde by the elimination of arbitrary constants:
Consider the equation
Fla,y.z.0.0) =0

where a and b denote arbitrary constats.
ct Teacher

i

® Case 1: of arbitrary constants < No. of independent variables
For example z=azx+y. S0, p=a,q= 1
Substituting @ = p in the equation, we get one pde z=x p+y .
Note that ¢ = 1 is also a pde of z = ax + y.

® Case 2; of arbitrary constants No. of inde
then the ellmmatlon gives rise to a unique pamal dlfferent|al
equation of order one.

® For example, az + b = o’z + y.
= ap= a’? and a g=1=0a%p*x q=a"

® The pde is p g =1. Note: pde is not a linear diff. eqn.

® Case 3: No. of arbitrary constants > No. of independent variables.
For example = = ax + by + cxy. The elimination of arbitrary
constants leads to a pde of order usually greater than one.



Unit | : Integral Surfaces

® (Consider a first order partial differential equation in two unknowns
and y given be

fle,y,2,p.q) =0 (1)

Subject Teacher i E A i \
e ' The solution z = [, y; a.b) of (1) represents a surface in (x,y,2)

space.
This surface is called an integral surface of the partial differential
equation (1).

® A two parameter family of solutions = = F(x, y; a,b) of the equation

flz.y, z,p.q) =0.

is called a complete integral of the equation f(x,y,z,p,q) =0 if
the rank of the matrix

- -{'1u ll'?r'rj 1":’;.’: .
M= (F;, F, Fyb) is two.



Unit | : Example on Complete Integral

Consider f(z,y,2,p,q) =z —px—qy—p*> —¢> = 0.
Show that the two parameter family of = = F(x,y; a,b) given by
z = axr+ by + a® + b* is a complete integral.

Subject Teacher

Solution:
r=ar+by+a?+P =p=z,=ag=2z,=>

LHS =z—pr—qu—p*—¢*
=azx+by+a®+ b —ax — by — a® — ¥
=10

Hence z = ax + by + a® + b* is a solution of z — pr — qy — p* — ¢*> = 0.



Unit | : Example on Complete Integral

To show that z = az + by + a® + b? is a complete integral of
z—pr—qy—p* —¢>=0.

F(z,y;a,b) = ax + by + a® + b*
F, Fia P _f(x+2a 1 0
F, Fop .Fyb ot y+2b 0 1
Rank of the above matrix is 2.

Hence z = ax + by + a® + b? is a complete integral of
z—pr—qy—p: —q¢*=0.



Unit | : Envelope of one parameter family

of surfaces

® Let 5, be a family of one parameter surfaces » = F(x,y;a) where a
is the parameter. Consider the following system of equations.

z=F(z,y:a),

Subject Teacher () = Fa (.f'. Y (L}.

The envelope £ of S,, if exists, is defined as the set of all
(x.y.z) € B? satisfying the above system of equations for some
value of the parameter a.

® For a fixed value of a, these two equations determine a curve (.
The envelope E of the family of surfaces S, is the union of all these
curves (.

® The envelope £ of the family of surfaces S, is obtained by
eliminating a between

z = F(z,y;a), (2)

0= Fu(z,y;a). (3)



Unit | : Classification of Integral Surfaces

Lemma 0.4
Consider the partial differential equation f(x.y,z,p.q) =0

Subject Teacher

Let S, be a one parameter family of solutions z = F(x, y; a) where a is
the parameter of ().

Then the envelope of this family, if it exists, is also a solution of

flzy,2,p.q)=0.




Unit | : Envelope of one parameter family

of surfaces

® |let S, be a family of surfaces of two parameters a and b given by
z=F(z,y;a,b)

Subject Teacher Let ¢ : R — IR be any function.

Let S, 4 be the one-parameter family of surfaces given by
Zi=F (;1:,, Y, r:,r,-":{r.-,)).

Consider the following system of equations.

z=F(z.y;a,¢(a)),
0= F,+ F,o'(a).

The envelope of S, 4, if exists, is defined as the set of all
(2,y,2) € R? satisfying the above system of equations for some
value of the parameter a.



Unit | : General Integral Solution

® et S, be a two parameter family z = F'(x, y,a,b) of complete

solutions of f(x,y,p,q) = 0 where a, b are the parameters. Let
¢ : R — IR be any function.

Let S, be a family of the surfaces = = F'(x,y;a, ¢(a)).
Then the envelope of S, ; is also a solution of f(x,y,p,q) = 0.

This solution is called a General integral of f(x,y,z, p.q) = 0.
® \When a particular function ¢ is used, we obtain a

particular integral of the partial differential equation.

Different choices of @ may give different particular solutions of the
partial differential equation.



Unit | : Example on Particular Integral

Consider f(z,y.2,p,q) =z —pxr — quy— p*> — ¢> = 0.
Given that z = F(x,y;a.b) = az + by + a® + b? is a complete integral.
If b =\/1 —«a? then find the particular integral.

The envelope E of the family = = F(x,y.a,d(a)) is obtained by
eliminating a between = = F(x,y, a, ¢(a)) and

Folz,y,a,b) + Fy(z,y,a.0)¢(a) =0
—{l

v1—a

z= F(x,y;a,b) = ar + by + a® + b*

b=+V1—a®>= dé(a) = V1 —a2 So d'(a) =

—i

Fo+ Fy+¢'(n) =0 = (x+2a)+ (y + 2b) » =0

1—a?

Hence « = ————. Putting this in = = az + by + a® + b?, we get,



2
)
(/ y+1
e m2+y2*y+
2
1
TTp a—"

B VaZ+y? a2+ 2
=422+ +1

Hence the envelope is given by z = /a2 + y% + 1.
The particular integral is z = /22 + y? + 1.




Unit | : Envelope of two parameters family
of surfaces and Singular Integral

® |et S, be a family of two parameter surfaces z = f(x.y:a.b)
where a. b are the parameters. Consider the following system of
equations.

z = F(z,y;a;b),
0= Fu(:r-. y;aﬂb}v
0= Fy(z,y:a,b).

The envelope E of S, 3, if exists, is defined as the set of all

(2,1, z) € B? satisfying the above system of equations for some
values of the parameters a and b.



Unit | : Singular Integral

Let S, be a two parameter family of complete integrals = = F(x,y;a, b)
Stibject eacher of f(x,y,z,p,q) = 0 where a,b are the parameters. Then the envelope
of S, is also a solution of f(x,y.p,q) = 0.

(This is Lemma no. 1.3.2 in our syllabus)

® This solution is called a singular integral of f(x,y, z,p.q) = 0.

Consider f(z,y,z.p.q) =z —pz—qy—p> —¢> =0.

Given that z = F(z.y;a,b) = ax + by + o + b7 is a complete integral,

Find the singular integral.




Unit | : Example: Finding Singular Integral

® For singular integral, we take z = F(x,y:a,b) and the we eliminate

a and b using the equations F,(x,y;a.b) = 0 and Fy(x,y;a,b) = 0.

Here,
z=F(z.ysa.b) =az+by+a + b
F, =x+2a
F, =y+2b
& y
Fo=0FH=0= ”:_5: b:_5
Substituting these values in z = F(x,y;a,b) = ax + by + a® + b2,
we get
2 + y2

4
That is, 4z = —(22 + y?)



Subject Teacher

Unit | : Another method to Find Singular
Integral

Lemma 0.8
Let = = F(x,y;a.b) be a complete integral of f(x,y.2,p.q) = 0 and
== Flx.y,alz,y),b(x,y)) be the singular integral of f(z,y,2,p.q) = 0.

Then the singular integral satisfies the equations

flz,y.2.p,9) =0,
folz oy, z,pq) =0,

folzy,zopq) =0,




Unit | : Another method to Find Singular
Integral

Example 0.9
Consider f(x,5.2.p,q) = z —pr — qy — p* — ¢* = 0.

Subject Teacher

Given that =z = F(x,1;a,b) = ax + by + a® + b? is a complete integral.

Find the singular integral using the above lemma.

We know that singular integral satisfies:

flz,y.2,p.q) =0 = z—pr—qy—p°—q¢* =0,
folz, 4, 2,p,9) =0 = z—2p=0,
folr,y.2,p,0) =0 = —y—2¢=0.
This implies p = _g,q =t
$2+y2
4

Hence the singular solution is z = —



Unit | : Cauchy Problem

The Cauchy Problem
® Given a first order partial differential equation and a curve in space,

Subject Teacher the Cauchy problem is to find an integral surface (i.e. a solution) of
the given partial differential equation which contains the given curve.
In other words, given a partial differential equation (not necessarily
non-linear)

flz,y,2.p.q) =0
and a curve = = x(s),y = y(s), 2 = z(s), s € [a,b],
the Cauchy problem is to find a solution z = z(x. y) of the pde

such that z(s) = z(x(s). y(s)) for all s € [a,D].
(Note: We will be studying this in unit Il in detail.)



Unit | : General Solutions of Quazi linear

equations or Lagrange's equation

Theorem 0.10

The general solution of the Lagrange equation

Subject Teacher P(x’ U Z]p o Q(‘r’y'! Z)q i R(I’ U Z), (*)

where P, () and R are continuously differentiable functions on the domain
D C R? is ¢(u,v) = 0 where ¢ is an arbitrary function and

u(z,y,z)=ea and v(z.y,2)=c

are two independent solutions of d_g = % Ee dﬁz

(Lagrange's auxiliary equations of (#))

The general solution (or integral) of (1) is written in one of the following
three equivalent forms:

P(u,v) =0, u=G(v) or v=H(u)



Subject Teacher

Unit | :General Solution of Lagrange's

Equation (more no. of ind. variables)

Theorem 0.11

A general solution of the quasi-linear partial differential equation

0z az 0z
P P +FP,—=R
Ly ey e 23 2 + Bz,
where P,. Ps. ..., P, R are continuously differentiable functions of
1,22, ....0, and z, not simultaneously zero,

is the relation ¢(1, Uz, ...,u,) = 0 where ¢ is an arbitrary differentiable
function and w1 (21,22, ..o\ 0y 2) = €1, U2 (T, Tay oo o By 2) =

€2y eoey Un (@1, Ty oy y, 2) = ¢, are independent solutions of the
equations

dz, _dz _  _
Pl_Pg_ _P,., R’




Unit | :Type 1: Solving Lagarange’s

Equation

Lagrange's auxiliary eqns are

dr _dy d=

P Q R

dx i dz ~
Tz Yy

Taking the first two fractions, from

(1)

o _dy

H'_~ T zz

22 dr = y2 dy

B=y+a (2

Y=z .
Solve the pde of 2. p4azg=1y°
&

Taking the first and the last from

().
L
r

zdz =z dz.
22 =22 + ¢z (3)

From (2) and (3), the required general solution is

¢(1‘3 5 93932 " 22) =0.

2 2

Another form of the general integral is G(z® — y*) = 2 — 22.



Unit | :Type 2: Solving Lagarange’s

Equation

Solve the pde p + 3 ¢ = 52 + tan(y — 3z)

Lagrange's auxiliary eqns are
de _dy dz
P Q R
de  di dz
il o O .
1 3 tan(y — dax)
Taking the first two fractions, from  Taking the first and the last from
(1) (1).
do _ dy de _
1~ 3 1~ Bz+tane
y—3r=c (2). .. o _
¢ denotes a constant. @ =5z +taner) = c2
dl"—lll(rj.,-f-td'[l(]) =0 (3).

(c2 denotes a constant)

From (2) and (3), the required general solution is
¢ (y — 3z,5z — In(5z + tane,)) =0
where ¢ is an arbitrary function.



Unit | :Type 3: Solving Lagarange’s

Equation

Let P,.(; and R, be functions of &,y and z.

Then each fraction in Lagrange’s auxiliary eqns

d—w:d—y:E is equal to
"I R
Pyde+ Q) dy+ R, dz (¥)
PIP+@Q:1Q+ RR
It AP+ (Q1Q + RiR =0, then the numerator of (%) is also (. This
gives
Podz+Q,dy+ Ry dz=0 (++)

This can be integrated to get u;(x,y, z) = ¢;. This method may be
repeated to get another integral us(z, y,2) = ¢a. Py, ()1, Ry are called

multiplayers.
b—e c—a a—bh
Solve the pde Yz p+ar——g= Ty,
[ ) £
Lagrange's auxiliary eqns are

a dr = b dy . e dz 1),

yz(b—c) zz(c—a) ayla—0bh)




Unit | :Type 3: Solving Lagarange’s

Equation

Choosing x,y, z as multipliers, Now, choosing ax,by and cz as
each fraction equals multipliers for egn (1), we get
_ax dr+bydy+czdz -

a’x dr + b2y dy + 2z dz
zyz(alb = ) + ble — @) + c(a — b))

Subject Teacher

0 :
= ax de + by dy +cz dz = (.

Integrating ) . :
2" Y #2 a’x de + 02y dy + 2z dz
H-E +|’)'_7 t+e— =@ =
— qr? -T— by2 +ez? = - (2} = a?r dr + b2y dy + Ardz=0
(c1 being arbitrary constant). Integrating,
A’ + 03P+ Pl = -+ (3)

From (2) and (3), the required general
solution is

o] {rr.:rg + by? + 22, a2x? + b2 + szz) = (.
where @ is an arbitrary function.



Unit | :Type 4: Solving Lagarange's
Equation

Let P, )y and 77 be functions of =,y and =.
Then all fractions in A = dy = & are equal to

' P-qQ R
Pide + Qdy + Rydz (s
PP+ OQ+ R :

Suppose the numerator is the exact differential of the denominator of
().

Then (##) can be combined with a suitable fraction in (%) to give an
integral.



Unit | :Type 4: Solving Lagarange's

Equation

(y+z)p+(z+ax)g=a+y
Lagrange's auxiliary eqns are
doe — dy dz

(z4+3) z+y

(y+2)

(1),

Choosing 1, —1,0 as multipliers,
each fraction equals
de—dy  d(x—y)

y—x T—y
Choosing 0,1, —1 as multipliers,
each fraction equals

- (2).

Choosing 1,1.1 as multipliers, each
fraction equals

B de + dy + d= B
T y4ztrtrdrty
de +dz ;

_dy—dz _ dly—z) (3) From (2),(3) and (4), we have,
z—y y—2 o
Cdlz—y)  dly—z) dr+dy+dz

- (5).

z—y y—z
Taking the first two fractions of (5)
dz—y) _dly—z)
xT—y Y-z

n 2r+y+z)



Unit | :Type 4: Solving Lagarange's

Equation

Integrating, — "I: — =0 -+ (6)
: Taking the first and third fractions of (5)
Subject Teacher d(l‘? - y) = s d:r + dy + dz

r—y  2Az+y+2)

Integrating, —2In(z —y) =In{z +y +2) + InCy
In(z+y+z2)+2n(z —y) =—1nCy
In(z+y+z)(z—y)?=lne
(z+y+z)(c—y)?=co (7).

From (6) and (7), the required general

solution is
% -

0] "f._(:tr+y+z)(:r—y)"') =),
y—=z

where ¢ is an arbitrary function.




Unit | : Pfaffian Differential Equation

* By a Pfaffian differential equation, we mean a differential
equation of the form

Fi(z1,za,...,zx)dey + - - + F(z1, 22, ..., 2p)dz, =0 (%)

where F!s. 1 < i < n are continuous functions.

The expression on the LHS is called a Pfaffian differential form.
* A Pfaffian differential form
Fi(zy,e2,. 0 y2n)dey + - + By (z1, 22,0020 )2y

is said to be exact if we can find a continuously differentiable
function u(z;,zs,...,2,) such that

‘h‘:Fl(-Tl,Izs---a:Cn)dIl +"'+Fn(I|,ZE2‘...,I“)dJ:“.




Subject Teacher

A Pfaffian differential equation
F1($19$21 v !xﬂ)dzl o ety Fn(ﬂfl,&':g, .- ,In)ti'ﬂn =0 (**)
is said to be exact if the Pfaffian differential form on the LHS of the
equation is exact.

That is, the Pfaffian differential equation (%) is said to be exact if
we can find a continuously differentiable function
w(xy,22,...,2,) such that

du = Fy(z1,%3,...,2,)dz1 + - - + Fy(21, 29, - . ., Tp )d,,.

The function u(xy,zs,...,2,) = ¢, is called the integral of the
corresponding Pfaffian differential equation.
The Pfaffian differential equation (++) is said to be integrable if
there exists a non-zero differentiable function p(z.,2,...,5)
such that the Pfaffian differential form

w(F(z1. 20, ... 20)dey + - + Fp(21, 22,00, 20 }day,)
is exact.
The function g(zy,z3,...,2,) is called an integrating factor of



Unit | : Pfaffian Differential Equation

There always exists an integrating factor for a Pfaffian differential
equation in two variables (P(z,y) dz + Q(z,y) dy = 0).

Subject Teacher

Let w(a,y) = e and v(a,y) = 2 be two functions of # and y such that
v
— #0.
9y
O(u,
If, further (8
9(z,y)
then there exists a relation F(u,v) =0
between u and v not involving z and y explicitly.




Unit | : Pfaffian Differential Equation

Recall: If X = (P, @, R) then the curl of X is defined by

cud X = (Ry — Q)i+ (P. — R)j +(Q. — Pk

® The definition of curl can be difficult to remember. To help with
remembering, we use the following determinant formula.

i j Kk
curl X = det c')(_)r j—y (—):
P Q R



SANTOSI S DIANMDAE

Unit | : Pfaffian Differential Equation

and g is an arbitrary nonzero

FX = (.P(:t', y.2), Q(z,y, 2), Rz, y, z})

differentiable function of @,y and z then

Subject Teacher

X- curl X =0 ifandonlyif puX- curl (;Jf) =1

A necessary and sufficient condition that the Pfaffian differential
equation

X -dr = P(z,y, 2)dz + Q(z.y, z)dy + R(z,y.2)dz =0 (4)

to be integrable is that X - curl X=0




Unit | : Condition for Pfaffian Differential
Equation to be exact

Subject Teacher

Necessary and sufficient condition for the Pfaffian differential equation
X . dr = Pla,y, z)dz + Q(x,y, 2)dy + R(z,y, z)dz = 0 to be exact is

curl X =0

Thatis, Ry —Q.=0,FP. — Ry, Q» — F, =0




Example 1 of Pfaffian differential

Unit |
Equation

Show that the following Pfaffian differential equation is exact and find its

integral. y dr + x dy+ 2z d=

Here P =y, () =, R,= 22.»
i J k

o a o a
| = —  — = (0,0,0).
curl X = det % (0,0,0)

y T
Clearly, y du + o dy+ 2z dz = d(zy + 2%)
= (). This implies d(zy + z%) = ¢.

So, d(zy + z*
Hence the |ntegra| is u(z,y, z) = wy + 22




Unit | : Example 2 of Pfaffian differential
Equation

Find the integral of yz da + 2zz dy — 3zy dz =0

Here P = yz, () = 2;(:3;1? = —‘3::.'1;.
i k

dy 0=

curl X = det U‘i a g ={(—3z—2x) —J(—33;—g;)—ﬁ(2:—3]
-

yz 2xr —3ry

curl X = =5z i+ -lyj-’.— : k
X cud X = —-5zyz + 8xyz — 3zyz=10

Hence given equation is integrable.



Unit | : Example 2 of Pfaffian differential

Equation

Keep z as a constant and write the differential equation as follows:
yz dr+2zxz dy =10

We find the solution of the above equation.

dx d
de __,dy
-

; Y
% y? = ¢y whee ¢; is a constant and it may contain z.

So, Uz, y,z) = zy? = e;.
Now we find Integrating factor pu

ol /
Consider equation Lr}j—tr =p*P OR C;—LU =p#Q
Here 4 = usyz = p = g



Unit | : Example 2 of Pfaffian differential

Equation

Now we find K = (

Subject Teacher .K' = g i [—3.1,'3}') _ U = _drj} s —%.
e & . dU
Substitute in the equation G +K=0
div
This implies dr; - £ =0

We solve this equation.
Solution is U = ¢z3.

This means 1% = ez
Therefore the integral of t2he given Pfaffian equation is

Ty
u(xayv Z) = 2_3 =k



