

Learn Mathematics Free With Us WELCOME TO

An Online Tutoring Programme for B.E. / B.Sc. students to learn Mathematics, MatLab, LaTeX, Python

My Inspiration Late. Shivlal Dhamone

Subject Teacher Santosh Dhamor

Lecture No. 10: Module 1: Arithmetic, Algebra and Combinatorics

Subject Teacher Santosh Dhamone

Assistant Professor in Mathematics Art's Commerce and Science College,Onde Tal:- Vikramgad, Dist:- Palghar

> ssdhamone@acscollegeonde.ac.in www.santoshdhamone.com

> > July 5, 2025
> > Subject Teacher Santosh Dhamone

Contents

My Inspiration Late. Shivlal Dhamone

Subject Teacher

Indian Mathematics

- **1** The Zero and the Decimal System: The early appearance of Zero
- Terms for the multiples of ten like 10, 20, 30 etc. in Rigveda. Terms for the higher powers of 10, given by Aryabhat, Mahaviracharya and Bhaskaracharya
- The elementary operations like addition, subtraction, multiplication, division. Operations with fractions. Operations with zero. Squares and Cubes.
- 4 Methods to Obtain Square Roots and Cube Roots in Indian Mathematics
- 5 Solved Examples: Square and Cube Roots by

 Aryabhata Bhaskaracharya

Contents

My Inspiration Late. Shivlal Dhamone

Santosh Dhamo

Indian Mathematics

- Impossibility of square root of negative numbers, expressed by Indian mathematicians
- 7 Varga-Sankramana, Quadratic Equation
- Trairashik, Vyasta-Trairashik, Paanchrashik, Saaptarashik
- The problem of Kuttaka and the methods given by Brahmagupta and Bhaskaracharya.
- The Problem of Varga Prakriti and the Method Given by Bhaskaracharya

Contents

My Inspiration Late. Shivlal Dhamone

Subject Teach

Indian Mathematics

- Step-by-Step Solution Using Chakravala Method
- Progressions and Series in Indian Mathematics
- Combinatorics in Ancient Indian Mathematics
- Some examples from ancient Indian combinatorics with their original Sanskrit verses, followed by modern translations and explanations.

My Inspiration Late. Shivlal Dhamone

Subject Teache Santosh Dhamo

Introduction:

Introduction:

- "Varga" means square, and "Prakriti" means nature or type.
- The Varga-Prakriti problem involves solving quadratic indeterminate equations of the form:

$$x^2 = Dy^2 + 1$$

or more commonly in its general form:

$$x^2 - Dy^2 = 1$$

This is known today as the **Pell's equation**.

■ In ancient Indian mathematics, solving this equation was referred to as the *Varga-Prakriti* problem.

My Inspiration Late. Shivlal Dhamone

Subject Teacher Santosh Dhamor

My Inspiration Late. Shivlal Dhamone

antosh Dhamo

Bhaskaracharya and His Work:

Bhaskaracharya and His Work

- The 12th-century Indian mathematician Bhaskaracharya II discusses the Varga-Prakriti in his treatise Bijaganita (Algebra).
- He called this type of equation Varga-Prakriti and gave a general method for solving it.
- He adopted and improved upon the Chakravala method, originally developed by Jayadeva and earlier versions by Brahmagupta.

My Inspiratio Late. Shivlal Dhamone

Subject Teache Santosh Dhamoi

The Varga-Prakriti Problem:

General form:

$$x^2 - Dy^2 = 1$$

where D is a non-square positive integer.

Goal:

Find integer solutions x, y.

My Inspiration Late. Shivlal Dhamone

Subject Teacher Santosh Dhamor

Bhaskaracharya's Method – Chakravala Method:

Bhaskaracharya described a cyclic and efficient algorithm to solve the Varga-Prakriti equation, called the Chakravala (cyclic) method.

Steps of the Chakravala Method::

Step 1: Choose initial triple a, b, k such that:

$$a^2 - Db^2 = k$$

Begin with small integers such that this relation is true with small k.

Late. Shivlal Dhamone

Step 2: Find *m* such that:

 $\frac{a+bm}{b}$ is an integer and *m* satisfies:

 $m^2 \equiv D \pmod{k}$

Choose the value of m such that $|m^2 - D|$ is minimized.

Step 3: Update triple:

$$a' = \frac{am + Db}{|k|}, \ b' = \frac{a + bm}{|k|}, \ k' = \frac{m^2 - D}{k}$$

Step 4: Repeat steps until $k = \pm 1$.

Step 5: The final pair (a, b) gives the solution to:

$$x^2 = Dy^2 = 1$$

My Inspiratio Late. Shivlal Dhamone

Subject Teache Santosh Dhamoi

Solved Example:

Solving $x^2 - 61y^2 = 1$:

Let us follow the Chakravala steps (brief sketch):

- Start with $a = 8, b = 1, k = 8^2 61 \times 1^2 = 3$
- Try values of m such that $m^2 \equiv 61 \pmod{3}$
- Continue cycle (around 5–6 steps)
- Final solution: x=1766319049, y=226153980

My Inspiration
Late. Shivlal
Dhamone

Subject Teache Santosh Dhamo Why Bhaskaracharya's Method Is Remarkable:

It provided integer solutions efficiently centuries before similar techniques in Europe.

It is algorithmic in nature — a clear step-by-step process.

European mathematicians (like Euler and Lagrange) only discovered the solution to Pell's equation much later.

My Inspiration Late. Shivlal Dhamone

Subject Teache Santosh Dhamo

Connections with Modern Math:

Varga-Prakriti = Pell's equation.

Chakravala method = continued fraction algorithm in disguise.

Bhaskaracharya's insights laid the groundwork for later developments in Diophantine equations.

My Inspiration Late. Shivlal Dhamone

Subject Teache

Summary:

Concept	Description
Varga-Prakriti	Equation of the form $x^2 - Dy^2 = 1$
Key Contributor	Bhaskaracharya II
Main Method	Chakravala (cyclic) method
Objective	Find integer solutions for non-square D
Significance	Ancient algorithm rivaling modern algeb