

Learn Mathematics Free With Us WELCOME TO

An Online Tutoring Programme for B.E. / B.Sc. students to learn Mathematics, MatLab, LaTeX, Python

My Inspiration Late. Shivlal Dhamone

Subject Teache Santosh Dhamor

Lecture No. 11: Module 1: Arithmetic, Algebra and Combinatorics

Subject Teacher Santosh Dhamone

Assistant Professor in Mathematics Art's Commerce and Science College,Onde Tal:- Vikramgad, Dist:- Palghar

> ssdhamone@acscollegeonde.ac.in www.santoshdhamone.com

> > July 5, 2025
> > Subject Teacher Santosh Dhamone

Contents

My Inspiration Late. Shivlal Dhamone

Subject Teacher

Indian Mathematics

- **1** The Zero and the Decimal System: The early appearance of Zero
- Terms for the multiples of ten like 10, 20, 30 etc. in Rigveda. Terms for the higher powers of 10, given by Aryabhat, Mahaviracharya and Bhaskaracharya
- The elementary operations like addition, subtraction, multiplication, division. Operations with fractions. Operations with zero. Squares and Cubes.
- 4 Methods to Obtain Square Roots and Cube Roots in Indian Mathematics
- 5 Solved Examples: Square and Cube Roots by

 Aryabhata Bhaskaracharya

Contents

My Inspiration Late. Shivlal Dhamone

Santosh Dhamo

Indian Mathematics

- Impossibility of square root of negative numbers, expressed by Indian mathematicians
- 7 Varga-Sankramana, Quadratic Equation
- Trairashik, Vyasta-Trairashik, Paanchrashik, Saaptarashik
- The problem of Kuttaka and the methods given by Brahmagupta and Bhaskaracharya.
- The Problem of Varga Prakriti and the Method Given by Bhaskaracharya

Contents

My Inspiration Late. Shivlal Dhamone

Subject Teach

Indian Mathematics

- Step-by-Step Solution Using Chakravala Method
- Progressions and Series in Indian Mathematics
- Combinatorics in Ancient Indian Mathematics
- Some examples from ancient Indian combinatorics with their original Sanskrit verses, followed by modern translations and explanations.

My Inspiration
Late. Shivlal
Dhamone

Subject Teacher Santosh Dhamo

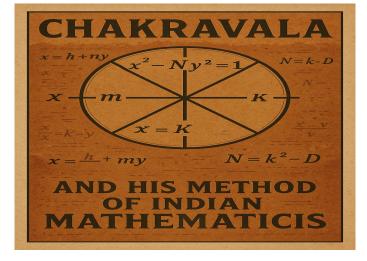
Find integer solutions to $x^2 13y^2 = 1$:

i.e., solve:
$$x^2 = 13y^2 + 1$$
:

Step 1: Choose initial triple (a, b, k)

We look for small integers a, b such that $a^2 13b^2 = k$

Try:


Let
$$a = 7$$
, $b = 2$
 $7^213 \times 2^2 = 4952 = 3$

$$\implies$$
 $(a, b, k) = (7, 2, 3)$

My Inspiration Late. Shivlal Dhamone

Subject Teache Santosh Dhamor

My Inspiratio Late. Shivlal Dhamone

Subject Teache Santosh Dhamo

Step 2: Find integer m such that

- (a + bm) divisible by k, and
- $m^2 \equiv 13 \; (mod \; k)$
- Minimize $|m^2 13|$

Here k = -3, so:

Try
$$m=1$$
;

$$7 + 21 = 9, 9(3) = 3 \implies divisible$$

so, take
$$m=1$$

My Inspiration
Late. Shivlal
Dhamone

Subject Teach Santosh Dhamo

Step 3: Compute next values

Use formulas:

$$a' = \frac{am + 13b}{|k|}, b' = \frac{a + bm}{|k|}, k' = \frac{m^2 - 13}{k}$$

Now plug in: a = 7, b = 2, k = 3, m = 1

$$a' = \frac{71 + 132}{|-3|} = \frac{7 + 26}{3} = \frac{33}{3} = 11$$
$$b' = \frac{7 + 21}{|-3|} = \frac{7 + 2}{3} = \frac{9}{3} = 3$$

$$k' = \frac{1^2 - 13}{-3} = \frac{1 - 13}{\frac{3}{\text{Subject 13 cher Santosh 3hamone}}} = \frac{-12}{3} = 4$$

My Inspiratio Late. Shivlal Dhamone

Subject Teache Santosh Dhamo

New triple: (a, b, k) = (11, 3, 4)

Step 4: Repeat with new triple

Now: (a = 11, b = 3, k = 4)

Find *m* such that:

 $11 + 3m \equiv 0 \mod 4 \rightarrow 3m \equiv -11 \equiv 1 \mod 4$

so $3m \equiv 1 \mod 4 \implies m \equiv 3 \mod 4$

Try *m*= 3:

Check $|m^2 - 13| = |9 - 13| = 4$

Okay, take m = 3

My Inspiratio Late. Shivlal Dhamone

Subject Teache Santosh Dhamor

New triple: (a, b, k) = (11, 3, 4)

Step 4: Repeat with new triple

Now: (a = 11, b = 3, k = 4)

Find *m* such that:

 $11 + 3m \equiv 0 \mod 4 \rightarrow 3m \equiv -11 \equiv 1 \mod 4$

so $3m \equiv 1 \mod 4 \implies m \equiv 3 \mod 4$

Try *m*= 3:

Check $|m^2 - 13| = |9 - 13| = 4$

Okay, take m = 3

My Inspiration
Late. Shivlal
Dhamone

Subject Teache

Step 5: Compute new triple

$$a' = \frac{11.3 + 133}{4} = \frac{33 + 39}{4} = \frac{72}{4} = 18$$
$$b' = \frac{11 + 33}{4} = \frac{11 + 9}{4} = \frac{20}{4} = 5$$
$$k' = \frac{3^2 - 13}{4} = \frac{9 - 13}{4} = \frac{-4}{4} = -1$$

New triple: (a, b, k) = (18, 5, -1)

My Inspiration Late. Shivlal Dhamone

Subject Teacher

Final Step: We now have

$$a^2 - 13b^2 = -1 \implies 18^2 - 13 \times 5^2 = 324 - 325 = -1$$

To get a solution for: $x^2 - 13y^2 = 1$

Multiply the current solution with itself (composition of solutions):

$$x = 18^2 + 13 \times 5^2 = 324 + 325 = 649$$

 $y = 2 \times 18 \times 5$

So the final solution is:

$$x = 649, y = 180$$

My Inspiration
Late. Shivlal
Dhamone

Subject Teache Santosh Dhamo

So the final solution is:

$$x = 649, y = 180$$

Verification:

$$x^2 - 13y^2 = 649^2 - 13 \times 180^2 = 421201 - 421200 = 1$$