

Learn Mathematics Free With Us WELCOME TO

An Online Tutoring Programme for B.E. / B.Sc. students to learn Mathematics, MatLab, LaTeX, Python

My Inspiration Late. Shivlal Dhamone

Subject Teache Santosh Dhamo

Lecture No. 5: Module 1: Arithmetic, Algebra and Combinatorics

Subject Teacher Santosh Dhamone

Assistant Professor in Mathematics Art's Commerce and Science College,Onde Tal:- Vikramgad, Dist:- Palghar

> ssdhamone@acscollegeonde.ac.in www.santoshdhamone.com

> > July 5, 2025
> > Subject Teacher Santosh Dhamone

Contents

My Inspiration Late. Shivlal Dhamone

Subject Teacher

Indian Mathematics

- **1** The Zero and the Decimal System: The early appearance of Zero
- Terms for the multiples of ten like 10, 20, 30 etc. in Rigveda. Terms for the higher powers of 10, given by Aryabhat, Mahaviracharya and Bhaskaracharya
- The elementary operations like addition, subtraction, multiplication, division. Operations with fractions. Operations with zero. Squares and Cubes.
- 4 Methods to Obtain Square Roots and Cube Roots in Indian Mathematics
- 5 Solved Examples: Square and Cube Roots by

 Aryabhata Bhaskaracharya

Contents

My Inspiration Late. Shivlal Dhamone

Santosh Dhamo

Indian Mathematics

- Impossibility of square root of negative numbers, expressed by Indian mathematicians
- 7 Varga-Sankramana, Quadratic Equation
- Trairashik, Vyasta-Trairashik, Paanchrashik, Saaptarashik
- The problem of Kuttaka and the methods given by Brahmagupta and Bhaskaracharya.
- The Problem of Varga Prakriti and the Method Given by Bhaskaracharya

Contents

My Inspiration Late. Shivlal Dhamone

Subject Teach

Indian Mathematics

- Step-by-Step Solution Using Chakravala Method
- Progressions and Series in Indian Mathematics
- Combinatorics in Ancient Indian Mathematics
- Some examples from ancient Indian combinatorics with their original Sanskrit verses, followed by modern translations and explanations.

Solved Examples: Square and Cube Roots by Aryabhata Bhaskaracharya

My Inspiration Late. Shivlal Dhamone

Subject Teache

Square Root Extraction (Varga Moola):

Example 1: Find $\sqrt{1522756}$ by Method: Bhaskaracharya's Place-Value Method (similar to long division) .

Step 1: Group digits in pairs from right

 $1522756 \to 15|22|75|6$

Step 2: Find the largest square ≤ 15

$$\sqrt{15} \approx 3.87 \rightarrow take3 \rightarrow 3^2 = 9$$

Write 3 as the first digit of root. Subtract: $15-9=6 \rightarrow$ bring down $22 \rightarrow 622$

My Inspiration Late. Shivlal Dhamone

Santosh Dhamon

Step 3: Double $3 \rightarrow 6$, write as divisor prefix:

Try $68 \times 8 = 544, 69 \times 9 = 621$

- $69 \times 9 = 621 \le 622 \rightarrow take 9$
- Next digit = 9; Root so far = 39
- Subtract: 622 621 = 1 \rightarrow bring down 75 \rightarrow 175

Step 4: Double 39 \rightarrow 78, write as divisor prefix:

Try $782 \times 2 = 1564$

■
$$782 \times 2 = 1564 < 1750 \rightarrow try \ 783 \times 3 = 2349$$

(too big) Try $781 \times 2 = 1562 \rightarrow fits$

- Next digit = 2; Root so far = 392
- Subtract: 1750 $1562 = 188 \rightarrow \text{bring down } 6 \rightarrow$

My Inspiration
Late. Shivlal
Dhamone

Subject Teache Santosh Dhamo

Step 5: Double 392 \rightarrow 784, try fitting digit:

Try $7842 \times 2 = 15684$ (too big), go for smallest that fits Try $7812 \times 2 = 15624 \rightarrow$ fits

- Next digit = 2
- Final root: 1234

Answer :: $\sqrt{1522756} = 1234$

Solved Examples: Square and Cube Roots by Aryabhata Bhaskaracharya

Late. Shivlal

Dhamone

ubject Teacher

Cube Root Extraction (Ghana Moola):

Example 2: Find √48228544 by Method: Bhaskaracharya's Cube Root Method (digit-wise, using identity).

Step 1: Group digits into triads from right $48228544 \rightarrow 48|228|544$ Step 2: First digit

Find cube root of 48:

- $3^3 = 27, 4^3 = 64 \rightarrow pick \ 3$
- Root so far = 3
- Subtract $3^3 = 27 \rightarrow = 21$

My Inspiration
Late. Shivlal
Dhamone

Subject Teacher Santosh Dhamon

Step 3: Use formula:

Next digit = y, Use:

$$(30)^2 \cdot y = 900y$$
 (approximate to find fitting y)

Try y = 2 \rightarrow 900 \times 2 = 1800 Still less than 21228 \rightarrow try y = 2.3 \rightarrow test with real expansion

Try
$$y = 2$$

New root = 32

My Inspiration Late. Shivlal Dhamone

Subject Teacher

Step 3: Use formula:

Use identity:

$$(a+b)^3 = a^3 + 3a^2b + 3ab^2 + b^3$$

Let a = 30, b = 2

$$(30+2)^3 = 30^3 + 3302 + 3304 + 8$$

$$= 27000 + 5400 + 720 + 8 = 33128$$

My Inspiration
Late. Shivlal
Dhamone

Santosh Dhamon

Step 3: Use formula:

Too large. Try b = 1

$$(30+1)^3 = 30 + 3301 + 3301 + 1$$

$$= 27000 + 2700 + 90 + 1 = 29791$$

Still too high. Go back — must be error in expansion Try a new number to make the process clearer.

My Inspiration Late. Shivlal Dhamone

Santosh Dhamon

```
Simplified Cube Root Example: \sqrt[3]{74088}
Step 1: Group digits from right \rightarrow 74 — 088
Step 2: Estimate root of 74
4^3 = 64 < 74
5^3 = 125 > 74 \rightarrow \text{take } 4
Root so far = 4
Subtract 64 from 74 \rightarrow remainder = 10
Bring down 088 \rightarrow \text{new dividend} = 10088
Step 3: Use identity approximation:
Try 40 + x
Let's try x = 2
(40 + 2)^3 = 40^3 + 3 \times 40^2 \times 2 + 3 \times 40 \times 4 + 8
64000 + 9600 + 480 + 8 = 74088
www.santoshdhamone.com + 480 + 8 = 74088
Subject Teacher Santosh Dhamone
```